Loading [MathJax]/jax/output/SVG/config.js
Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика, 2019, том 19, выпуск 3, страницы 280–288
DOI: https://doi.org/10.18500/1816-9791-2019-19-3-280-288
(Mi isu807)
 

Эта публикация цитируется в 12 научных статьях (всего в 12 статьях)

Научный отдел
Математика

О классическом решении смешанной задачи для однородного волнового уравнения с закрепленными концами и нулевой начальной скоростью

А. П. Хромов

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского, Россия, 410012, г. Саратов, ул. Астраханская, д. 83
Список литературы:
Аннотация: В статье даются необходимые и достаточные условия классического решения для однородного волнового уравнения с суммируемым потенциалом, закрепленными концами и нулевой начальной скоростью. Используя метод Фурье с приемом Крылова по улучшению скорости сходимости рядов, удается получить аналог формулы Даламбера, представимого в виде ряда, сходящегося с экспоненциальной скоростью. Результаты статьи являются существенным усилением аналогичных итогов, полученных нами в 2016 г. Предложенный новый метод, базирующийся на применении расходящихся рядов в понимании Эйлера, обладает большой экономичностью в использовании известных математических фактов. Тем самым открывается перспектива существенного продвижения в исследовании и других граничных задач для уравнений в частных производных.
Ключевые слова: метод Фурье, расходящиеся ряды, прием А. Н. Крылова, классическое решение, резольвента.
Поступила в редакцию: 24.04.2019
Принята в печать: 04.06.2019
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.96:517.984
Образец цитирования: А. П. Хромов, “О классическом решении смешанной задачи для однородного волнового уравнения с закрепленными концами и нулевой начальной скоростью”, Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 19:3 (2019), 280–288
Цитирование в формате AMSBIB
\RBibitem{Khr19}
\by А.~П.~Хромов
\paper О классическом решении смешанной задачи для~однородного волнового уравнения с~закрепленными концами и~нулевой начальной скоростью
\jour Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика
\yr 2019
\vol 19
\issue 3
\pages 280--288
\mathnet{http://mi.mathnet.ru/isu807}
\crossref{https://doi.org/10.18500/1816-9791-2019-19-3-280-288}
\elib{https://elibrary.ru/item.asp?id=39542330}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/isu807
  • https://www.mathnet.ru/rus/isu/v19/i3/p280
  • Эта публикация цитируется в следующих 12 статьяx:
    1. V. S. Rykhlov, “Classical Solution of the Initial-Boundary Value Problem for the Wave Equation with Mixed Derivative”, J Math Sci, 2025  crossref
    2. В. С. Рыхлов, “Обобщённое решение начально-граничной задачи для волнового уравнения со смешанной производной и потенциалом общего вида”, Материалы Воронежской международной весенней математической школы «Современные методы краевых задач. Понтрягинские чтения—XXXIV», Воронеж, 3-9 мая 2023 г. Часть 3, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 232, ВИНИТИ РАН, М., 2024, 99–121  mathnet  crossref
    3. В. С. Рыхлов, “Единственность решения начально-граничной задачи для гиперболического уравнения со смешанной производной и формула для решения”, Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 23:2 (2023), 183–194  mathnet  crossref
    4. В. С. Рыхлов, “Обобщённая начально-граничная задача для волнового уравнения со смешанной производной”, СМФН, 69:2 (2023), 342–363  mathnet  crossref [V. S. Rykhlov, “Generalized initial-boundary problem for the wave equation with mixed derivative”, CMFD, 69:2 (2023), 342–363  mathnet]
    5. A. P. Khromov, “Divergent Series and Generalized Mixed Problems for Heat Conduction and Schrödinger Equations of the Simplest Form”, Lobachevskii J Math, 44:8 (2023), 3367  crossref
    6. В. С. Рыхлов, “Разрешимость смешанной задачи для гиперболического уравнения с распадающимися краевыми условиями при отсутствии полноты собственных функций”, Материалы Воронежской весенней  математической школы  «Современные методы теории краевых  задач. Понтрягинские чтения–XXXI». Воронеж, 3–9 мая 2020 г., Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 204, ВИНИТИ РАН, М., 2022, 124–134  mathnet  crossref
    7. Ф. Е. Ломовцев, “Глобальная теорема корректности первой смешанной задачи для общего телеграфного уравнения с переменными коэффициентами на отрезке”, ПФМТ, 2022, № 1(50), 62–73  mathnet  crossref
    8. И. С. Ломов, “Обобщенная формула Даламбера для телеграфного уравнения”, Материалы 20 Международной Саратовской зимней школы «Современные проблемы теории функций и их приложения», Саратов, 28 января — 1 февраля 2020 г.  Часть 1, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 199, ВИНИТИ РАН, М., 2021, 66–79  mathnet  crossref
    9. Г. В. Хромова, “Об операторах с разрывной областью значений и их применении”, Материалы 20 Международной Саратовской зимней школы «Современные проблемы теории функций и их приложения», Саратов, 28 января — 1 февраля 2020 г.  Часть 2, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 200, ВИНИТИ РАН, М., 2021, 58–64  mathnet  crossref
    10. В. П. Курдюмов, А. П. Хромов, “Расходящиеся ряды и смешанная задача для волнового уравнения со свободными концами”, Материалы 20 Международной Саратовской зимней школы «Современные проблемы теории функций и их приложения», Саратов, 28 января — 1 февраля 2020 г.  Часть 2, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 200, ВИНИТИ РАН, М., 2021, 65–72  mathnet  crossref
    11. В. С. Рыхлов, “Разрешимость смешанной задачи для гиперболического уравнения при отсутствии полноты собственных функций”, Материалы 20 Международной Саратовской зимней школы «Современные проблемы теории функций и их приложения», Саратов, 28 января — 1 февраля 2020 г.  Часть 2, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 200, ВИНИТИ РАН, М., 2021, 95–104  mathnet  crossref
    12. A. P. Khromov, V. V. Kornev, “Divergent series in the Fourier method for the wave equation”, Tr. Inst. Mat. Mekhaniki URO RAN, 27:4 (2021), 215–238  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Статистика просмотров:
    Страница аннотации:333
    PDF полного текста:107
    Список литературы:38
     
      Обратная связь:
    math-net2025_03@mi-ras.ru
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025