Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2023, Volume 69, Issue 2, Pages 342–363
DOI: https://doi.org/10.22363/2413-3639-2023-69-2-342-363
(Mi cmfd506)
 

This article is cited in 6 scientific papers (total in 6 papers)

Generalized initial-boundary problem for the wave equation with mixed derivative

V. S. Rykhlov

Saratov State University, Saratov, Russia
Full-text PDF (349 kB) Citations (6)
References:
Abstract: We study an initial-boundary problem for a second-order inhomogeneous hyperbolic equation in a half-strip of the plane containing a mixed derivative with constant coefficients and zero or nonzero potential. This equation is the equation of transverse oscillations of a moving finite string. The case of zero initial velocity and fixed ends (Dirichlet conditions) is considered. It is assumed that the roots of the characteristic equation are simple and lie on the real axis on opposite sides of the origin. The classical solution of the initial-boundary problem is determined. In the case of zero potential, a uniqueness theorem for the classical solution is formulated and a formula for the solution is given in the form of a series consisting of contour integrals containing the initial data of the problem. Based on this formula, the concepts of a generalized initial-boundary value problem and a generalized solution are introduced. The main theorems on finite formulas for the generalized solution in the case of homogeneous and inhomogeneous problems are formulated. To prove these theorems, we apply an approach that uses the theory of divergent series in the sense of Euler, proposed by A. P. Khromov (axiomatic approach). Using this approach, on the basis of formulas for solutions in the form of a series, the formulated main theorems are proved. Further, as an application of the main theorems obtained, we prove a theorem on the existence and uniqueness of a generalized solution of the initial-boundary problem in the presence of a nonzero summable potential and give a formula for the solution in the form of an exponentially convergent series.
Keywords: initial boundary value problem, hyperbolic equation, wave equation, partial differential equation, half-strip, mixed derivative in the equation, potential of the general form, generalized solution.
Bibliographic databases:
Document Type: Article
UDC: 517.958, 517.956.32
Language: Russian
Citation: V. S. Rykhlov, “Generalized initial-boundary problem for the wave equation with mixed derivative”, CMFD, 69, no. 2, PFUR, M., 2023, 342–363
Citation in format AMSBIB
\Bibitem{Ryk23}
\by V.~S.~Rykhlov
\paper Generalized initial-boundary problem for the wave equation with mixed derivative
\serial CMFD
\yr 2023
\vol 69
\issue 2
\pages 342--363
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd506}
\crossref{https://doi.org/10.22363/2413-3639-2023-69-2-342-363}
\edn{https://elibrary.ru/URKODE}
Linking options:
  • https://www.mathnet.ru/eng/cmfd506
  • https://www.mathnet.ru/eng/cmfd/v69/i2/p342
  • This publication is cited in the following 6 articles:
    1. Ksaverii Malyshev, Mikhail Malykh, Leonid Sevastianov, Alexander Zorin, “On Summation of Fourier Series in Finite Form Using Generalized Functions”, Mathematics, 13:3 (2025), 538  crossref
    2. V. S. Rykhlov, “Classical Solution of the Initial-Boundary Value Problem for the Wave Equation with Mixed Derivative”, J Math Sci, 2025  crossref
    3. V. S. Rykhlov, “Obobschennoe reshenie nachalno-granichnoi zadachi dlya volnovogo uravneniya so smeshannoi proizvodnoi i potentsialom obschego vida”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody kraevykh zadach. Pontryaginskie chteniya—XXXIV», Voronezh, 3-9 maya 2023 g. Chast 3, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 232, VINITI RAN, M., 2024, 99–121  mathnet  crossref
    4. I. S. Lomov, “Generalized Solution of a Mixed Problem for the Wave Equation with a Nonsmooth Right-Hand Side”, Dokl. Math., 109:2 (2024), 121  crossref
    5. I. S. Lomov, “Generalized solution of a mixed problem for a wave equation with a non-smooth right-hand side”, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, 516 (2024), 26  crossref
    6. V. S. Rykhlov, “Klassicheskoe reshenie nachalno-granichnoi zadachi dlya volnovogo uravneniya so smeshannoi proizvodnoi”, SMFN, 70, no. 3, Rossiiskii universitet druzhby narodov, M., 2024, 451–486  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:108
    Full-text PDF :39
    References:28
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025