Loading [MathJax]/jax/output/CommonHTML/jax.js
Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика, 2014, том 14, выпуск 1, страницы 77–87
DOI: https://doi.org/10.18500/1816-9791-2014-14-1-77-87
(Mi isu489)
 

Эта публикация цитируется в 16 научных статьях (всего в 16 статьях)

Механика

Математическая теория связанных плоских гармонических термоупругих волн в микрополярных континуумах первого типа

В. А. Ковалевa, Е. В. Мурашкинb, Ю. Н. Радаевb

a Кафедра управления проектами и инвестициями, Московский городской университет управления Правительства Москвы
b Институт проблем механики им. А. Ю. Ишлинского РАН, Москва
Список литературы:
Аннотация: В представляемой работе в рамках линейной теории обобщенной микрополярной термоупругости первого типа (GNI/CTE) с помощью связанной системы уравнений движения и теплопроводности выполнен анализ плоских гармонических связанных термоупругих волн перемещений, микровращений и температуры. Исследованы также закономерности распространения волновых поверхностей слабых разрывов перемещений, микровращений и температуры в термоупругом микрополярном континууме первого типа. Вычислены нормальные скорости распространения указанных волновых поверхностей. Получено и проанализировано с помощью пакета символьных вычислений Mathematica детерминантное уравнение для определения волновых чисел (постоянных распространения (PC)) плоских гармонических связанных термоупругих волн перемещений,микровращений и температуры. Факторизация полученного частотного полиномиального уравнения 14-й степени позволила свести его к биквадратному и бикубическому уравнениям относительно волновых чисел. Для волновых чисел поперечных и продольных волн получены алгебраические формы, содержащие многозначные комплексные квадратные и кубические радикалы.
Ключевые слова: микрополярная термоупругость, континуум первого типа, слабый разрыв, продольная волна, поперечная волна, волновое число, частотное уравнение.
Реферативные базы данных:
Тип публикации: Статья
УДК: 539.374
Образец цитирования: В. А. Ковалев, Е. В. Мурашкин, Ю. Н. Радаев, “Математическая теория связанных плоских гармонических термоупругих волн в микрополярных континуумах первого типа”, Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 14:1 (2014), 77–87
Цитирование в формате AMSBIB
\RBibitem{KovMurRad14}
\by В.~А.~Ковалев, Е.~В.~Мурашкин, Ю.~Н.~Радаев
\paper Математическая теория связанных плоских гармонических термоупругих волн в~микрополярных континуумах первого типа
\jour Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика
\yr 2014
\vol 14
\issue 1
\pages 77--87
\mathnet{http://mi.mathnet.ru/isu489}
\crossref{https://doi.org/10.18500/1816-9791-2014-14-1-77-87}
\elib{https://elibrary.ru/item.asp?id=21510775}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/isu489
  • https://www.mathnet.ru/rus/isu/v14/i1/p77
  • Эта публикация цитируется в следующих 16 статьяx:
    1. A. V. Zemskov, D. V. Tarlakovskii, “On the Issue of Variational Formulation of Problems of Generalized GN-Thermoelasticity”, Math Models Comput Simul, 17:1 (2025), 11  crossref
    2. А. В. Земсков, Д. В. Тарлаковский, “К вопросу о вариационной формулировке задач обобщенной GN–термоупругости”, Матем. моделирование, 36:5 (2024), 19–31  mathnet  crossref [A. V. Zemskov, D. V. Tarlakovskii, “On the issue of variational formulation of problems of generalized GN-thermoelasticity”, Matem. Mod., 36:5 (2024), 19–31  mathnet]
    3. Е. В. Мурашкин, Ю. Н. Радаев, “Волновые числа гармонических плоских волн трансляционных и спинорных перемещений в полуизотропной термоупругой среде”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 28:3 (2024), 445–461  mathnet  crossref
    4. Е.В. Мурашкин, Ю.Н. Радаев, “Плоские гармонические термоупругие волны в ультрагемитропном микрополярном теле”, Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. Серия: Механика предельного состояния, 2024, № 2(60), 116  crossref
    5. Е.В. Мурашкин, “Обобщенные фигуры Ная для ультрагемитропных и ультраизотропных микрополярных упругих тел”, Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. Серия: Механика предельного состояния, 2024, № 3(61), 140  crossref
    6. Е.В. Мурашкин, Ю.Н. Радаев, “Волновые числа связанной плоской термоупругой волны в ультраизотропной среде”, Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. Серия: Механика предельного состояния, 2024, № 3(61), 128  crossref
    7. Е.В. Мурашкин, Н.Э. Стадник, “Мультивесовая теория слабых разрывов, распространяющихся в полуизотропной термоупругой микрополярной среде”, Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. Серия: Механика предельного состояния, 2024, № 2(60), 87  crossref
    8. E. V. Murashkin, Yu. N. Radayev, “Coupled Harmonic Plane Waves in a Semi-Isotropic Thermoelastic Medium”, Mech. Solids, 59:4 (2024), 2387  crossref
    9. E. V. Murashkin, Yu. N. Radayev, “Plane Thermoelastic Waves in Ultrahemitropic Micropolar Solid”, Mech. Solids, 59:5 (2024), 3212  crossref
    10. E. V. Murashkin, Yu. N. Radayev, “Wavenumbers of Doublet and Triplet Plane Thermoelastic Wave in Ultraisotropic Micropolar Medium”, Mech. Solids, 59:6 (2024), 3681  crossref
    11. E. V. Murashkin, Y. N. Radayev, “Polarization Vectors of Plane Waves in Semi-Isotropic Thermoelastic Micropolar Solids”, Mech. Solids, 59:7 (2024), 3880  crossref
    12. E. V. Murashkin, Y. N. Radayev, “A Negative Weight Pseudotensor Formulation of Coupled Hemitropic Thermoelasticity”, Lobachevskii J Math, 44:6 (2023), 2440  crossref
    13. V. A. Kovalev, E. V. Murashkin, Y. N. Radayev, “On deformation of complex continuum immersed in a plane space”, Eighth Polyakhov's Reading, AIP Conf. Proc., 1959, eds. E. Kustova, G. Leonov, N. Morosov, M. Yushkov, M. Mekhonoshina, Amer. Inst. Phys., 2018, 070018  crossref  isi  scopus
    14. E. V. Murashkin, Y. N. Radayev, “Divergent conservation laws in hyperbolic thermoelasticity”, Eighth Polyakhov's Reading, AIP Conf. Proc., 1959, eds. E. Kustova, G. Leonov, N. Morosov, M. Yushkov, M. Mekhonoshina, Amer. Inst. Phys., 2018, 070025  crossref  isi  scopus
    15. Evgenii V. Murashkin, Nikita E. Stadnik, H.L. Yuan, R.K. Agarwal, P. Tandon, E.X. Wang, “Compatibility Conditions in Continua with Microstrusture”, MATEC Web Conf., 95 (2017), 12001  crossref
    16. Е. В. Мурашкин, Ю. Н. Радаев, “О сильных и слабых разрывах связанного термомеханического поля в термоупругих микрополярных континуумах второго типа”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 4(37) (2014), 85–97  mathnet  crossref  zmath  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Статистика просмотров:
    Страница аннотации:363
    PDF полного текста:112
    Список литературы:73
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025