|
Метод непрерывного продолжения по параметру при решении краевых задач для нелинейных систем дифференциально-алгебраических уравнений с запаздыванием, имеющих особые точки
М. Н. Афанасьева, Е. Б. Кузнецов Московский авиационный институт (национальный исследовательский университет)
Аннотация:
Рассматривается численный метод решения нелинейной краевой задачи для системы дифференциально-алгебраических уравнений с запаздывающим аргументом, имеющих предельные особые точки. Для численного решения краевой задачи применяется метод стрельбы. Значение параметра «пристрелки» вычисляется с помощью метода Ньютона. Рассматривается случай, когда задача является плохо обусловленной, вследствие чего метод может расходиться. В этом случае решение строится продвижением по наилучшему параметру, которым является длина кривой множества решений. Решение начальной задачи при каждом найденном значении параметра «пристрелки» вычисляется с помощью метода непрерывного продолжения по наилучшему параметру.
Ключевые слова:
численный метод, краевая задача, дифференциальное уравнение с запаздыванием, метод стрельбы, метод продолжения по наилучшему параметру, сингулярно возмущенное уравнение.
Образец цитирования:
М. Н. Афанасьева, Е. Б. Кузнецов, “Метод непрерывного продолжения по параметру при решении краевых задач для нелинейных систем дифференциально-алгебраических уравнений с запаздыванием, имеющих особые точки”, Материалы Воронежской весенней математической школы
«Современные методы теории краевых задач. Понтрягинские чтения–XXX». Воронеж, 3–9 мая 2019 г. Часть 3, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 192, ВИНИТИ РАН, М., 2021, 38–45
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/into779 https://www.mathnet.ru/rus/into/v192/p38
|
|