Abstract:
The minimization of a smooth functional on a generalized spherical segment of a finite-dimensional Euclidean space is examined. A relaxation method that involves successive projections of the antigradient onto auxiliary sets of a simpler structure is proposed. It is shown that, under certain natural assumptions, this method converges to a stationary point.
Citation:
A. M. Dulliev, “A relaxation method for minimizing a smooth function on a generalized spherical segment”, Zh. Vychisl. Mat. Mat. Fiz., 54:2 (2014), 208–223; Comput. Math. Math. Phys., 54:2 (2014), 219–234
\Bibitem{Dul14}
\by A.~M.~Dulliev
\paper A relaxation method for minimizing a smooth function on a generalized spherical segment
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2014
\vol 54
\issue 2
\pages 208--223
\mathnet{http://mi.mathnet.ru/zvmmf9988}
\crossref{https://doi.org/10.7868/S0044466914020045}
\elib{https://elibrary.ru/item.asp?id=21136495}
\transl
\jour Comput. Math. Math. Phys.
\yr 2014
\vol 54
\issue 2
\pages 219--234
\crossref{https://doi.org/10.1134/S0965542514020043}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000332740500004}
\elib{https://elibrary.ru/item.asp?id=21870967}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84897767592}
Linking options:
https://www.mathnet.ru/eng/zvmmf9988
https://www.mathnet.ru/eng/zvmmf/v54/i2/p208
This publication is cited in the following 5 articles:
A. M. Dulliev, “Minimizatsiya gladkoi funktsii na granitse vneshnego obobschennogo segmenta sfery”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2024, no. 87, 22–33
Yu. A. Chernyaev, “Numerical algorithm for minimizing a convex function on the intersection of a smooth surface and a convex compact set”, Comput. Math. Math. Phys., 59:7 (2019), 1098–1104
Yu. A. Chernyaev, “Convergence of the gradient projection method and Newton's method as applied to optimization problems constrained by intersection of a spherical surface and a convex closed set”, Comput. Math. Math. Phys., 56:10 (2016), 1716–1731
A. M. Dulliev, “Nearly optimal coverings of a sphere with generalized spherical segments”, Comput. Math. Math. Phys., 55:7 (2015), 1110–1119
Yu. A. Chernyaev, “An extension of the gradient projection method and Newton's method to extremum problems constrained by a smooth surface”, Comput. Math. Math. Phys., 55:9 (2015), 1451–1460