Loading [MathJax]/jax/output/SVG/config.js
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2016, Volume 56, Number 10, Pages 1733–1749
DOI: https://doi.org/10.7868/S0044466916100057
(Mi zvmmf10471)
 

This article is cited in 7 scientific papers (total in 7 papers)

Convergence of the gradient projection method and Newton's method as applied to optimization problems constrained by intersection of a spherical surface and a convex closed set

Yu. A. Chernyaev

Kazan National Research Technical University, Kazan, Tatarstan, Russia
Full-text PDF (275 kB) Citations (7)
References:
Abstract: The gradient projection method and Newton's method are generalized to the case of nonconvex constraint sets representing the set-theoretic intersection of a spherical surface with a convex closed set. Necessary extremum conditions are examined, and the convergence of the methods is analyzed.
Key words: spherical surface, convex closed set, gradient projection method, Newton's method, necessary conditions for a local minimum, convergence of an algorithm.
Received: 21.10.2015
English version:
Computational Mathematics and Mathematical Physics, 2016, Volume 56, Issue 10, Pages 1716–1731
DOI: https://doi.org/10.1134/S0965542516100055
Bibliographic databases:
Document Type: Article
UDC: 519.658
Language: Russian
Citation: Yu. A. Chernyaev, “Convergence of the gradient projection method and Newton's method as applied to optimization problems constrained by intersection of a spherical surface and a convex closed set”, Zh. Vychisl. Mat. Mat. Fiz., 56:10 (2016), 1733–1749; Comput. Math. Math. Phys., 56:10 (2016), 1716–1731
Citation in format AMSBIB
\Bibitem{Che16}
\by Yu.~A.~Chernyaev
\paper Convergence of the gradient projection method and Newton's method as applied to optimization problems constrained by intersection of a spherical surface and a convex closed set
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 10
\pages 1733--1749
\mathnet{http://mi.mathnet.ru/zvmmf10471}
\crossref{https://doi.org/10.7868/S0044466916100057}
\elib{https://elibrary.ru/item.asp?id=26665205}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 10
\pages 1716--1731
\crossref{https://doi.org/10.1134/S0965542516100055}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000386769200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84992396669}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10471
  • https://www.mathnet.ru/eng/zvmmf/v56/i10/p1733
  • This publication is cited in the following 7 articles:
    1. Yu. A. Chernyaev, “Conditional gradient method for optimization problems with a constraint in the form of the intersection of a convex smooth surface and a convex compact set”, Comput. Math. Math. Phys., 63:7 (2023), 1191–1198  mathnet  mathnet  crossref  crossref
    2. Yu. A. Chernyaev, “Gradient projection method for a class of optimization problems with a constraint in the form of a subset of points of a smooth surface”, Comput. Math. Math. Phys., 61:3 (2021), 368–375  mathnet  crossref  crossref  isi  elib
    3. V. I. Zabotin, P. A. Chernyshevsky, “Extension of Strongin's global optimization algorithm to a function continuous on a compact interval”, Kompyuternye issledovaniya i modelirovanie, 11:6 (2019), 1111–1119  mathnet  crossref
    4. Yu. A. Chernyaev, “Gradient projection method for optimization problems with a constraint in the form of the intersection of a smooth surface and a convex closed set”, Comput. Math. Math. Phys., 59:1 (2019), 34–45  mathnet  crossref  crossref  isi  elib
    5. V. I. Zabotin, Yu. A. Chernyaev, “Newton's method for minimizing a convex twice differentiable function on a preconvex set”, Comput. Math. Math. Phys., 58:3 (2018), 322–327  mathnet  crossref  crossref  isi  elib
    6. L. F. Petrov, “Search for periodic solutions of highly nonlinear dynamical systems”, Comput. Math. Math. Phys., 58:3 (2018), 384–393  mathnet  crossref  crossref  isi  elib
    7. Zh. Tang, J. Qin, J. Sun, B. Geng, “The gradient projection algorithm with adaptive mutation step length for non-probabilistic reliability index”, Teh. Vjesn., 24:1 (2017), 53–62  crossref  mathscinet  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:408
    Full-text PDF :72
    References:66
    First page:20
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025