Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2011, Volume 51, Number 11, Pages 2063–2074 (Mi zvmmf9576)  

This article is cited in 25 scientific papers (total in 25 papers)

Time averages and Boltzmann extremals for Markov chains, discrete Liouville equations, and the Kac circular model

S. Z. Adzhiev, V. V. Vedenyapin

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047 Russia
References:
Abstract: Time averages are proved to coincide with Boltzmann extremals for Markov chains, discrete Liouville equations, and their generalizations. A variational principle is proposed for finding stationary solutions in these cases.
Key words: Boltzmann equation, H-theorem, entropy, conservation laws, discrete velocity model, Boltzmann extremal, Liouville equation, time average, Cesaro mean, Markov chains, variational principle.
Received: 08.04.2011
English version:
Computational Mathematics and Mathematical Physics, 2011, Volume 51, Issue 11, Pages 1942–1952
DOI: https://doi.org/10.1134/S0965542511110029
Bibliographic databases:
Document Type: Article
UDC: 519.676
Language: Russian
Citation: S. Z. Adzhiev, V. V. Vedenyapin, “Time averages and Boltzmann extremals for Markov chains, discrete Liouville equations, and the Kac circular model”, Zh. Vychisl. Mat. Mat. Fiz., 51:11 (2011), 2063–2074; Comput. Math. Math. Phys., 51:11 (2011), 1942–1952
Citation in format AMSBIB
\Bibitem{AdzVed11}
\by S.~Z.~Adzhiev, V.~V.~Vedenyapin
\paper Time averages and Boltzmann extremals for Markov chains, discrete Liouville equations, and the Kac circular model
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2011
\vol 51
\issue 11
\pages 2063--2074
\mathnet{http://mi.mathnet.ru/zvmmf9576}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2933115}
\transl
\jour Comput. Math. Math. Phys.
\yr 2011
\vol 51
\issue 11
\pages 1942--1952
\crossref{https://doi.org/10.1134/S0965542511110029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000297345000010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-81455148960}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9576
  • https://www.mathnet.ru/eng/zvmmf/v51/i11/p2063
  • This publication is cited in the following 25 articles:
    1. V.V. Vedenyapin, A.A. Bay, V.I. Parenkina, A.G. Petrov, “Minimal Action Principle for Gravity and Electrodynamics, Einstein Lambda, and Lagrange Points”, Markov Processes And Related Fields, 2024, no. 2023 №4(29), 515  crossref
    2. V. V. Vedenyapin, A. A. Bay, “Least action principle for gravity and electrodynamics, the Lambda-term and the analog of Milne–McCrea solution for Lorentzian metric”, Eur. Phys. J. Plus, 139:2 (2024)  crossref
    3. V. V. Vedenyapin, V. I. Parenkina, A. G. Petrov, Chzhan Khaochen, “Uravnenie Vlasova-Einshteina i tochki Lagranzha”, Preprinty IPM im. M. V. Keldysha, 2022, 023, 23 pp.  mathnet  crossref
    4. S. Z. Adzhiev, V. V. Vedenyapin, I. V. Melikhov, “Kinetic aggregation models leading to morphological memory of formed structures”, Comput. Math. Math. Phys., 62:2 (2022), 254–268  mathnet  mathnet  crossref  crossref  isi  scopus
    5. V. V. Vedenyapin, V. I. Parenkina, S. R. Svirshchevskii, “Derivation of the equations of electrodynamics and gravity from the principle of least action”, Comput. Math. Math. Phys., 62:6 (2022), 983–995  mathnet  mathnet  crossref  crossref
    6. Vedenyapin V.V. Fimin N.N. Chechetkin V.M., “Properties of the Vlasov-Maxwell-Einstein Equations and Their Application to the Problems of General Relativity”, Gravit. Cosmol., 26:2 (2020), 173–183  crossref  isi
    7. Adzhiev S.Z. Melikhov V I. Vedenyapin V.V., “On the H-Theorem For the Becker-Doring System of Equations For the Cases of Continuum Approximation and Discrete Time”, Physica A, 553 (2020), 124608  crossref  isi
    8. S. Z. Adzhiev, Ya. G. Batishcheva, V. V. Vedenyapin, Yu. A. Volkov, V. V. Kazantseva, I. V. Melikhov, M. A. Negmatov, Yu. N. Orlov, N. N. Fimin, V. M. Chechetkin, “S.K. Godunov and kinetic theory at the Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences”, Comput. Math. Math. Phys., 60:4 (2020), 610–614  mathnet  crossref  crossref  isi  elib
    9. V. V. Vedenyapin, N. I. Karavaeva, O. A. Kostyuk, B. N. Chetverushkin, “Uravnenie Shredingera kak sledstvie novykh uravnenii tipa Vlasova”, Preprinty IPM im. M. V. Keldysha, 2019, 026, 11 pp.  mathnet  crossref  elib
    10. V. V. Vedenyapin, I. S. Pershin, “Vlasov–Maxwell–Einstein equation and Einstein lambda”, Preprinty IPM im. M. V. Keldysha, 2019, 039, 17 pp.  mathnet  crossref
    11. V. V. Vedenyapin, N. S. Smirnova, “Uravneniya Eilera i Nave–Stoksa kak sledstviya uravnenii tipa Vlasova”, Preprinty IPM im. M. V. Keldysha, 2019, 041, 20 pp.  mathnet  crossref  elib
    12. Adzhiev S.Z. Melikhov V I. Vedenyapin V.V., “Approaches to Determining the Kinetics For the Formation of a Nano-Dispersed Substance From the Experimental Distribution Functions of Its Nanoparticle Properties”, Nanosyst.-Phys. Chem. Math., 10:5 (2019), 549–563  crossref  isi
    13. V. V. Vedenyapin, N. N. Fimin, V. M. Chechetkin, “Equation of Vlasov–Maxwell–Einstein type and transition to a weakly relativistic approximation”, Comput. Math. Math. Phys., 59:11 (2019), 1816–1831  mathnet  crossref  crossref  isi  elib
    14. Sergey Adzhiev, Janina Batishcheva, Igor Melikhov, Victor Vedenyapin, “Kinetic Equations for Particle Clusters Differing in Shape and the H-theorem”, Physics, 1:2 (2019), 229  crossref
    15. V. V. Vedenyapin, T. S. Kazakova, Ya. K. V., B. N. Chetverushkin, “Schrödinger equation as a self-consistent field”, Dokl. Math., 97:3 (2018), 240–242  mathnet  crossref  crossref  mathscinet  mathscinet  zmath  isi  elib  scopus
    16. V. V. Vedenyapin, A. A. Andreeva, V. V. Vorobyeva, “Euler and Navier–Stokes equations as self-consistent fields”, Dokl. Math., 97:3 (2018), 283–285  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
    17. V. V. Vedenyapin, S. Z. Adzhiev, V. V. Kazantseva, “Entropiya po Boltsmanu i Puankare, ekstremali Boltsmana i metod Gamiltona–Yakobi v negamiltonovoi situatsii”, Differentsialnye i funktsionalno-differentsialnye uravneniya, SMFN, 64, no. 1, Rossiiskii universitet druzhby narodov, M., 2018, 37–59  mathnet  crossref
    18. V. V. Vedenyapin, “Uravnenie Vlasova–Maksvella–Einshteina”, Preprinty IPM im. M. V. Keldysha, 2018, 188, 20 pp.  mathnet  crossref  elib
    19. V. V. Vedenyapin, N. N. Fimin, V. M. Chechetkin, “Ob uravnenii Vlasova–Maksvella–Einshteina i ego nerelyativistskikh i slaborelyativistskikh analogakh”, Preprinty IPM im. M. V. Keldysha, 2018, 265, 30 pp.  mathnet  crossref  elib
    20. V. V. Vedenyapin, M. A. Negmatov, N. N. Fimin, “Vlasov-type and Liouville-type equations, their microscopic, energetic and hydrodynamical consequences”, Izv. Math., 81:3 (2017), 505–541  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:444
    Full-text PDF :139
    References:75
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025