Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2018, Volume 64, Issue 1, Pages 37–59
DOI: https://doi.org/10.22363/2413-3639-2018-64-1-37-59
(Mi cmfd345)
 

This article is cited in 6 scientific papers (total in 6 papers)

Entropy in the sense of Boltzmann and Poincare, Boltzmann extremals, and the Hamilton–Jacobi method in non-Hamiltonian context

V. V. Vedenyapina, S. Z. Adzhievb, V. V. Kazantsevaa

a Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Moscow, Russia
b Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (266 kB) Citations (6)
References:
Abstract: In this paper, we prove the H-theorem for generalized chemical kinetics equations. We consider important physical examples of such a generalization: discrete models of quantum kinetic equations (Uehling–Uhlenbeck equations) and a quantum Markov process (quantum random walk). We prove that time averages coincide with Boltzmann extremals for all such equations and for the Liouville equation as well. This gives us an approach for choosing the action–angle variables in the Hamilton–Jacobi method in a non-Hamiltonian context. We propose a simple derivation of the Hamilton–Jacobi equation from the Liouville equations in the finite-dimensional case.
Document Type: Article
UDC: 517.958
Language: Russian
Citation: V. V. Vedenyapin, S. Z. Adzhiev, V. V. Kazantseva, “Entropy in the sense of Boltzmann and Poincare, Boltzmann extremals, and the Hamilton–Jacobi method in non-Hamiltonian context”, Differential and functional differential equations, CMFD, 64, no. 1, Peoples' Friendship University of Russia, M., 2018, 37–59
Citation in format AMSBIB
\Bibitem{VedAdzKaz18}
\by V.~V.~Vedenyapin, S.~Z.~Adzhiev, V.~V.~Kazantseva
\paper Entropy in the sense of Boltzmann and Poincare, Boltzmann extremals, and the Hamilton--Jacobi method in non-Hamiltonian context
\inbook Differential and functional differential equations
\serial CMFD
\yr 2018
\vol 64
\issue 1
\pages 37--59
\publ Peoples' Friendship University of Russia
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd345}
\crossref{https://doi.org/10.22363/2413-3639-2018-64-1-37-59}
Linking options:
  • https://www.mathnet.ru/eng/cmfd345
  • https://www.mathnet.ru/eng/cmfd/v64/i1/p37
  • This publication is cited in the following 6 articles:
    1. V.V. Vedenyapin, A.A. Bay, V.I. Parenkina, A.G. Petrov, “Minimal Action Principle for Gravity and Electrodynamics, Einstein Lambda, and Lagrange Points”, Markov Processes And Related Fields, 2024, no. 2023 №4(29), 515  crossref
    2. V. V. Vedenyapin, V. I. Parenkina, A. G. Petrov, Chzhan Khaochen, “Uravnenie Vlasova-Einshteina i tochki Lagranzha”, Preprinty IPM im. M. V. Keldysha, 2022, 023, 23 pp.  mathnet  crossref
    3. V. V. Vedenyapin, N. N. Fimin, V. M. Chechetkin, “Properties of the vlasov-maxwell-einstein equations and their application to the problems of general relativity”, Gravit. Cosmol., 26:2 (2020), 173–183  crossref  mathscinet  zmath  isi  scopus
    4. S. Z. Adzhiev, Ya. G. Batishcheva, V. V. Vedenyapin, Yu. A. Volkov, V. V. Kazantseva, I. V. Melikhov, M. A. Negmatov, Yu. N. Orlov, N. N. Fimin, V. M. Chechetkin, “S.K. Godunov and kinetic theory at the Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences”, Comput. Math. Math. Phys., 60:4 (2020), 610–614  mathnet  crossref  crossref  isi  elib
    5. V. V. Vedenyapin, S. Z. Adzhiev, Ya. G. Batischeva, Yu. A. Volkov, V. V. Kazantseva, I. V. Melikhov, Yu. N. Orlov, M. A. Negmatov, N. N. Fimin, V. M. Chechetkin, Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov's Legacy, 2020, 381  crossref
    6. V. V. Vedenyapin, N. N. Fimin, V. M. Chechetkin, “Ob uravnenii Vlasova–Maksvella–Einshteina i ego nerelyativistskikh i slaborelyativistskikh analogakh”, Preprinty IPM im. M. V. Keldysha, 2018, 265, 30 pp.  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:431
    Full-text PDF :146
    References:79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025