Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2010, Volume 50, Number 1, Pages 44–59 (Mi zvmmf4811)  

This article is cited in 52 scientific papers (total in 52 papers)

Boundary conforming Delaunay mesh generation

K. Gärtner, H. Si, J. Fuhrmann

Berlin, Weierstrass Institute for Applied Analysis and Stochastics
References:
Abstract: A boundary conforming Delaunay mesh is a partitioning of a polyhedral domain into Delaunay simplices such that all boundary simplices satisfy the generalized Gabriel property. It's dual is a Voronoi partition of the same domain which is preferable for Voronoi-box based finite volume schemes. For arbitrary 2D polygonal regions, such meshes can be generated in optimal time and size. For arbitrary 3D polyhedral domains, however, this problem remains a challenge. The main contribution of this paper is to show that boundary conforming Delaunay meshes for 3D polyhedral domains can be generated efficiently when the smallest input angle of the domain is bounded by arccos1/370.53. In addition, well-shaped tetrahedra and appropriate mesh size can be obtained. Our new results are achieved by reanalyzing a classical Delaunay refinement algorithm. Note that our theoretical guarantee on the input angle (70.53) is still too strong for many practical situations. We further discuss variants of the algorithm to relax the input angle restriction and to improve the mesh quality.
Key words: Delaunay mesh, Voronoi partitions, partitions of polyhedra.
Received: 27.11.2008
Revised: 07.07.2009
English version:
Computational Mathematics and Mathematical Physics, 2010, Volume 50, Issue 1, Pages 38–53
DOI: https://doi.org/10.1134/S0965542510010069
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: English
Citation: K. Gärtner, H. Si, J. Fuhrmann, “Boundary conforming Delaunay mesh generation”, Zh. Vychisl. Mat. Mat. Fiz., 50:1 (2010), 44–59; Comput. Math. Math. Phys., 50:1 (2010), 38–53
Citation in format AMSBIB
\Bibitem{GarSiFuh10}
\by K.~G\"artner, H.~Si, J.~Fuhrmann
\paper Boundary conforming Delaunay mesh generation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2010
\vol 50
\issue 1
\pages 44--59
\mathnet{http://mi.mathnet.ru/zvmmf4811}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2681134}
\elib{https://elibrary.ru/item.asp?id=13044699}
\transl
\jour Comput. Math. Math. Phys.
\yr 2010
\vol 50
\issue 1
\pages 38--53
\crossref{https://doi.org/10.1134/S0965542510010069}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76649143449}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf4811
  • https://www.mathnet.ru/eng/zvmmf/v50/i1/p44
  • This publication is cited in the following 52 articles:
    1. Patricio Farrell, Julien Moatti, Michael O'Donovan, Stefan Schulz, Thomas Koprucki, “Importance of satisfying thermodynamic consistency in optoelectronic device simulations for high carrier densities”, Opt Quant Electron, 55:11 (2023)  crossref
    2. Hao-Yu Lin, Zai-Fa Zhou, Ji-Yang Liu, Su-Xin Bao, Qing-An Huang, 2023 International Symposium of Electronics Design Automation (ISEDA), 2023, 471  crossref
    3. Abdallah Bradji, Daniel Lesnic, “Steady-state inhomogeneous diffusion with generalized oblique boundary conditions”, ESAIM: M2AN, 57:5 (2023), 2701  crossref
    4. Xian-Yu Liu, An-Bo Li, Hao Chen, Yan-Qing Men, Yong-Liang Huang, “3D Modeling Method for Dome Structure Using Digital Geological Map and DEM”, IJGI, 11:6 (2022), 339  crossref
    5. Durand R., Farias M.M., Pedroso D.M., Meschke G., “Reinforcing Bars Modelling Using a Rod-Solid Interface Element Without the Need For Mesh Compatibility”, Finite Elem. Anal. Des., 197 (2021), 103634  crossref  mathscinet  isi
    6. Jürgen Fuhrmann, Hang Si, Mathematics in Industry, 35, German Success Stories in Industrial Mathematics, 2021, 149  crossref
    7. Selmer I., Farrell P., Smirnova I., Gurikov P., “Comparison of Finite Difference and Finite Volume Simulations For a Sc-Drying Mass Transport Model”, Gels, 6:4 (2020), 45  crossref  isi  scopus
    8. Abdelkader A., Bajaj Ch.L., Ebeida M.S., Mahmoud A.H., Mitchell S.A., Owens J.D., Rushdi A.A., “Vorocrust: Voronoi Meshing Without Clipping”, ACM Trans. Graph., 39:3 (2020), 23  crossref  isi
    9. Kantner M., “Generalized Scharfetter-Gummel Schemes For Electro-Thermal Transport in Degenerate Semiconductors Using the Kelvin Formula For the Seebeck Coefficient”, J. Comput. Phys., 402 (2020), 109091  crossref  isi
    10. Markus Kantner, Springer Theses, Electrically Driven Quantum Dot Based Single-Photon Sources, 2020, 47  crossref
    11. Markus Kantner, Theresa Höhne, Thomas Koprucki, Sven Burger, Hans-Jürgen Wünsche, Frank Schmidt, Alexander Mielke, Uwe Bandelow, Springer Series in Solid-State Sciences, 194, Semiconductor Nanophotonics, 2020, 241  crossref
    12. Fuhrmann J., Guhlke C., Linke A., Merdon C., Mueller R., “Induced Charge Electroosmotic Flow With Finite Ion Size and Solvation Effects”, Electrochim. Acta, 317 (2019), 778–785  crossref  isi
    13. K. Gärtner, L. Kamenski, “Why do we need Voronoi cells and Delaunay meshes? Essential properties of the Voronoi finite volume method”, Comput. Math. Math. Phys., 59:12 (2019), 1930–1944  mathnet  crossref  crossref  isi  elib
    14. Jürgen Fuhrmann, Clemens Guhlke, Alexander Linke, Christian Merdon, Rüdiger Müller, Lecture Notes in Computational Science and Engineering, 131, Numerical Geometry, Grid Generation and Scientific Computing, 2019, 73  crossref
    15. Bradji A., Fuhrmann J., “Convergence Order of a Finite Volume Scheme For the Time-Fractional Diffusion Equation”, Numerical Analysis and Its Applications (NAA 2016), Lecture Notes in Computer Science, 10187, eds. Dimov I., Farago I., Vulkov L., Springer International Publishing Ag, 2017, 33–45  crossref  mathscinet  zmath  isi  scopus
    16. Fuhrmann J., Glitzky A., Liero M., “Hybrid Finite-Volume/Finite-Element Schemes For P(X)-Laplace Thermistor Models”, Finite Volumes For Complex Applications Viii-Hyperbolic, Elliptic and Parabolic Problems, Springer Proceedings in Mathematics & Statistics, 200, eds. Cances C., Omnes P., Springer, 2017, 397–405  crossref  mathscinet  zmath  isi  scopus
    17. Fuhrmann J., Guhlke C., “A Finite Volume Scheme For Nernst-Planck-Poisson Systems With Ion Size and Solvation Effects”, Finite Volumes For Complex Applications Viii-Hyperbolic, Elliptic and Parabolic Problems, Springer Proceedings in Mathematics & Statistics, 200, eds. Cances C., Omnes P., Springer, 2017, 497–505  crossref  mathscinet  zmath  isi  scopus
    18. Farrell P., Linke A., “Uniform Second Order Convergence of a Complete Flux Scheme on Unstructured 1D Grids For a Singularly Perturbed Advection-Diffusion Equation and Some Multidimensional Extensions”, J. Sci. Comput., 72:1 (2017), 373–395  crossref  mathscinet  zmath  isi  scopus
    19. Jürgen Fuhrmann, Annegret Glitzky, Matthias Liero, “Electrothermal Description of Organic Semiconductor Devices by p(x)‐Laplace Thermistor Models”, Proc Appl Math and Mech, 17:1 (2017), 701  crossref
    20. Series in Optics and Optoelectronics, Handbook of Optoelectronic Device Modeling and Simulation, 2017, 733  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:532
    Full-text PDF :171
    References:61
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025