Abstract:
Unlike other schemes that locally violate the essential stability properties of the analytic parabolic and elliptic problems, Voronoi finite volume methods (FVM) and boundary conforming Delaunay meshes provide good approximation of the geometry of a problem and are able to preserve the essential qualitative properties of the solution for any given resolution in space and time as well as changes in time scales of multiple orders of magnitude. This work provides a brief description of the essential and useful properties of the Voronoi FVM, application examples, and a motivation why Voronoi FVM deserve to be used more often in practice than they are currently.
Citation:
K. Gärtner, L. Kamenski, “Why do we need Voronoi cells and Delaunay meshes? Essential properties of the Voronoi finite volume method”, Zh. Vychisl. Mat. Mat. Fiz., 59:12 (2019), 2007–2023; Comput. Math. Math. Phys., 59:12 (2019), 1930–1944
\Bibitem{GarKam19}
\by K.~G\"artner, L.~Kamenski
\paper Why do we need Voronoi cells and Delaunay meshes? Essential properties of the Voronoi finite volume method
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 12
\pages 2007--2023
\mathnet{http://mi.mathnet.ru/zvmmf10993}
\crossref{https://doi.org/10.1134/S0044466919120081}
\elib{https://elibrary.ru/item.asp?id=41240354 }
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 12
\pages 1930--1944
\crossref{https://doi.org/10.1134/S096554251912008X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000514816500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85079730433}
Linking options:
https://www.mathnet.ru/eng/zvmmf10993
https://www.mathnet.ru/eng/zvmmf/v59/i12/p2007
This publication is cited in the following 3 articles:
Xiaoyu Jin, Benxi Liu, Shengli Liao, Chuntian Cheng, Zhipeng Zhao, Yi Zhang, “Robust Optimization for the Self-Scheduling and Bidding Strategies of a Hydroproducer Considering the Impacts of Crossing Forbidden Zones”, J. Water Resour. Plann. Manage., 149:2 (2023)
Leonardo A. Poveda, Pedro Peixoto, “On pointwise error estimates for Voronoï-based finite volume methods for the Poisson equation on the sphere”, Adv Comput Math, 49:3 (2023)
V. A. Garanzha, L. Kamenski, L. N. Kudryavtseva, “Non-simplicial Delaunay meshing via approximation by radical partitions”, Comput. Math. Math. Phys., 62:8 (2022), 1203–1216