Loading [MathJax]/jax/output/CommonHTML/jax.js
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 1, Pages 124–158
DOI: https://doi.org/10.31857/S0044466922010082
(Mi zvmmf11349)
 

This article is cited in 5 scientific papers (total in 5 papers)

Partial Differential Equations

Blow-up of weak solutions of the Cauchy problem for (3+1)-dimensional equation of plasma drift waves

M. O. Korpusov, R. S. Shafir

Faculty of Physics, Lomonosov Moscow State University, 119991, Moscow, Russia
Citations (5)
Abstract: he Cauchy problem for a new equation describing drift waves in a magnetoactive plasma is considered. The existence and uniqueness of a local-in-time weak solution of the Cauchy problem are proved. The considered equation contains the power-law nonlinearity |u|q. It is shown that, for 1<q3, a weak solution u(x,t) does not exist even locally in time for a wide class of initial functions u0(x), while, for 3<q5, global-in-time weak solutions of the Cauchy problem do not exist for a wide class of initial functions independent of the initial function value, i.e., for “small” initial functions as well. For g>4, the existence of a unique local-in-time weak solution is proved using results of distribution theory and the contraction mapping principle.
Key words: onlinear equations of Sobolev type, blow-up, local solvability, nonlinear capacity, blow-up time estimates.
Funding agency Grant number
RUDN University Strategic Academic Leadership Program
This work was supported by the Program of Strategic Academic Leadership of RUDN.
Received: 10.01.2021
Revised: 10.01.2021
Accepted: 17.09.2021
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 1, Pages 117–149
DOI: https://doi.org/10.1134/S0965542522010080
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: M. O. Korpusov, R. S. Shafir, “Blow-up of weak solutions of the Cauchy problem for (3+1)-dimensional equation of plasma drift waves”, Zh. Vychisl. Mat. Mat. Fiz., 62:1 (2022), 124–158; Comput. Math. Math. Phys., 62:1 (2022), 117–149
Citation in format AMSBIB
\Bibitem{KorSha22}
\by M.~O.~Korpusov, R.~S.~Shafir
\paper Blow-up of weak solutions of the Cauchy problem for $(3+1)$-dimensional equation of plasma drift waves
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 1
\pages 124--158
\mathnet{http://mi.mathnet.ru/zvmmf11349}
\crossref{https://doi.org/10.31857/S0044466922010082}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4381169}
\elib{https://elibrary.ru/item.asp?id=47423722}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 1
\pages 117--149
\crossref{https://doi.org/10.1134/S0965542522010080}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000755152200010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124954856}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11349
  • https://www.mathnet.ru/eng/zvmmf/v62/i1/p124
  • This publication is cited in the following 5 articles:
    1. Mohamed Jleli, B. Samet, Praveen Agarwal, “Instantaneous Blow‐Up for a Generalized Drift Wave Differential Inequality of Sobolev Type”, Math Methods in App Sciences, 2025  crossref
    2. M. O. Korpusov, R. S. Shafir, “On Cauchy problems for nonlinear Sobolev equations in ferroelectricity theory”, Comput. Math. Math. Phys., 62:12 (2022), 2091–2111  mathnet  mathnet  crossref  crossref
    3. Ibtisam Aldawish, Ibtehal Alazman, Mohamed Jleli, Bessem Samet, “A (3+1)-dimensional equation of plasma drift waves perturbed by a singular potential in an infinite parallelepiped”, J. Phys. A: Math. Theor., 56:26 (2023), 265205  crossref
    4. R. S. Shafir, “Solvability and Blow-Up of Weak Solutions of Cauchy Problems for (3+1)-Dimensional Equations of Drift Waves in a Plasma”, Math. Notes, 111:3 (2022), 484–497  mathnet  crossref  crossref  mathscinet
    5. M. O. Korpusov, R. S. Shafir, “On the blowup of solutions of the Cauchy problem for nonlinear equations of ferroelectricity theory”, Theoret. and Math. Phys., 212:3 (2022), 1169–1180  mathnet  crossref  crossref  mathscinet  adsnasa
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:163
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025