Loading [MathJax]/jax/output/SVG/config.js
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 1, Pages 132–150
DOI: https://doi.org/10.31857/S0044466919120123
(Mi zvmmf11024)
 

This article is cited in 7 scientific papers (total in 7 papers)

Class of Neumann-type problems for the polyharmonic equation in a ball

V. V. Karachik

South Ural State University, Chelyabinsk, 454080 Russia
Citations (7)
References:
Abstract: A set of necessary solvability conditions for the class ${\mathcal{N}}_{k}$ of Neumann-type problems for the polyharmonic equation with a polynomial right-hand side in the unit ball is obtained. These conditions have the form of the orthogonality of homogeneous harmonic polynomials to linear combinations of boundary functions with coefficients from the Neumann integer triangle perturbed by certain derivatives of the right-hand side of the equation.
Key words: Neumann-type problems, polyharmonic equation, necessary solvability conditions.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 02.A03.21.0011
This work was supported by the Government of the Russian Federation, Resolution no. 211 of March 16, 2013, and Agreement no. 02.A03.21.0011.
Received: 18.02.2019
Revised: 18.02.2019
Accepted: 18.09.2019
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 1, Pages 144–162
DOI: https://doi.org/10.1134/S096554251912011X
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: V. V. Karachik, “Class of Neumann-type problems for the polyharmonic equation in a ball”, Zh. Vychisl. Mat. Mat. Fiz., 60:1 (2020), 132–150; Comput. Math. Math. Phys., 60:1 (2020), 144–162
Citation in format AMSBIB
\Bibitem{Kar20}
\by V.~V.~Karachik
\paper Class of Neumann-type problems for the polyharmonic equation in a ball
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 1
\pages 132--150
\mathnet{http://mi.mathnet.ru/zvmmf11024}
\crossref{https://doi.org/10.31857/S0044466919120123}
\elib{https://elibrary.ru/item.asp?id=41806932}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 1
\pages 144--162
\crossref{https://doi.org/10.1134/S096554251912011X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000521749800015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082427937}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11024
  • https://www.mathnet.ru/eng/zvmmf/v60/i1/p132
  • This publication is cited in the following 7 articles:
    1. A. Darya, N. Taghizadeh, “Three Boundary Value Problems for Complex Partial Differential Equations in the Lens Domain”, Comput. Math. and Math. Phys., 64:6 (2024), 1295  crossref
    2. B. Turmetov, V. Karachik, M. Muratbekova, “On a boundary value problem for the biharmonic equation with multiple involutions”, Mathematics, 9:17 (2021), 2020  crossref  mathscinet  isi
    3. Batirkhan Turmetov, Valery Karachik, INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020, 2365, INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020, 2021, 060002  crossref
    4. V. V. Karachik, “Sufficient conditions for solvability of one class of Neumann-type problems for the polyharmonic equation”, Comput. Math. Math. Phys., 61:8 (2021), 1276–1288  mathnet  mathnet  crossref  crossref  isi  scopus
    5. H. A. Matevossian, “Biharmonic problem with Dirichlet and Steklov-type boundary conditions in weighted spaces”, Comput. Math. Math. Phys., 61:6 (2021), 938–952  mathnet  mathnet  crossref  crossref  isi  scopus
    6. V. V. Karachik, “Usloviya razreshimosti zadachi Neimana $\mathcal{N}_2$ dlya poligarmonicheskogo uravneniya v share”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 12:2 (2020), 13–20  mathnet  crossref
    7. H. A. Matevossian, “Asymptotics and uniqueness of solutions of the elasticity system with the mixed dirichlet-robin boundary conditions”, Mathematics, 8:12 (2020), 2241  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:128
    References:27
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025