Loading [MathJax]/jax/output/SVG/config.js
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 1, Pages 122–131
DOI: https://doi.org/10.31857/S0044466919100089
(Mi zvmmf11023)
 

Completely conservative difference schemes for fluid dynamics in a piezoconductive medium with gas hydrate inclusions

V. A. Gasilovab, Yu. A. Poveschenkoba, V. O. Podrygaac, P. I. Rahimlia

a Federal Research Center Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, 125047 Russia
b National Research Nuclear University "MEPhI", Moscow, 115409 Russia
c Moscow Automobile and Road Construction State Technical University (MADI), Moscow 125319 Russia
References:
Abstract: The dynamics equations for a two-component fluid in a porous medium with gas hydrate inclusions are approximated on a structurally irregular difference grid. The case of a thermodynamically equilibrium model is considered. The support operator method is used to construct a family of completely conservative two-level difference schemes. The time approximation is based on expressions “weighted” according to grid time levels with weighting factors that generally vary in space. For a difference fluid dynamics problem, an algorithm based on splitting into physical processes is proposed.
Key words: support operator method, finite difference schemes, conservativeness, mathematical modeling, gas hydrates.
Funding agency Grant number
Russian Science Foundation 16-11-00100
This work was supported by the Russian Science Foundation, project no. 16-11-00100.
Received: 21.03.2019
Revised: 21.03.2019
Accepted: 18.09.2019
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 1, Pages 134–143
DOI: https://doi.org/10.1134/S0965542519100087
Bibliographic databases:
Document Type: Article
UDC: 519.635
Language: Russian
Citation: V. A. Gasilov, Yu. A. Poveschenko, V. O. Podryga, P. I. Rahimli, “Completely conservative difference schemes for fluid dynamics in a piezoconductive medium with gas hydrate inclusions”, Zh. Vychisl. Mat. Mat. Fiz., 60:1 (2020), 122–131; Comput. Math. Math. Phys., 60:1 (2020), 134–143
Citation in format AMSBIB
\Bibitem{GasPovPod20}
\by V.~A.~Gasilov, Yu.~A.~Poveschenko, V.~O.~Podryga, P.~I.~Rahimli
\paper Completely conservative difference schemes for fluid dynamics in a piezoconductive medium with gas hydrate inclusions
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 1
\pages 122--131
\mathnet{http://mi.mathnet.ru/zvmmf11023}
\crossref{https://doi.org/10.31857/S0044466919100089}
\elib{https://elibrary.ru/item.asp?id=41806930}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 1
\pages 134--143
\crossref{https://doi.org/10.1134/S0965542519100087}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000521749800014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082622067}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11023
  • https://www.mathnet.ru/eng/zvmmf/v60/i1/p122
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:110
    References:32
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025