Loading [MathJax]/jax/output/SVG/config.js
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 1, Pages 50–62
DOI: https://doi.org/10.1134/S0044466919010150
(Mi zvmmf10816)
 

This article is cited in 15 scientific papers (total in 15 papers)

Analytical-numerical approach to describing time-periodic motion of fronts in singularly perturbed reaction–advection–diffusion models

V.T. Volkov, D. V. Lukyanenko, N. N. Nefedov

Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991 Russia
Citations (15)
References:
Abstract: The paper presents an analytical-numerical approach to the study of moving fronts in singularly perturbed reaction–diffusion–advection models. A method for generating a dynamically adapted grid for the efficient numerical solution of problems of this class is proposed. The method is based on a priori information about the motion and properties of the front, obtained by rigorous asymptotic analysis of a singularly perturbed parabolic problem. In particular, the essential parameters taken into account when constructing the grid are estimates of the position of the transition layer, as well as its width and structure. The proposed analytical-numerical approach can significantly save computer resources, reduce the computation time, and increase the stability of the computational process in comparison with the classical approaches. An example demonstrating the main ideas and methods of application of the proposed approach is considered.
Key words: reaction–diffusion–advection models, singular perturbations, moving fronts, analytical-numerical method.
Funding agency Grant number
Russian Science Foundation 18-11-00042
This work was supported by the Russian Science Foundation, project no. 18-11-00042.
Received: 24.08.2018
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 1, Pages 46–58
DOI: https://doi.org/10.1134/S0965542519010159
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: V.T. Volkov, D. V. Lukyanenko, N. N. Nefedov, “Analytical-numerical approach to describing time-periodic motion of fronts in singularly perturbed reaction–advection–diffusion models”, Zh. Vychisl. Mat. Mat. Fiz., 59:1 (2019), 50–62; Comput. Math. Math. Phys., 59:1 (2019), 46–58
Citation in format AMSBIB
\Bibitem{VolLukNef19}
\by V.T.~Volkov, D.~V.~Lukyanenko, N.~N.~Nefedov
\paper Analytical-numerical approach to describing time-periodic motion of fronts in singularly perturbed reaction–advection–diffusion models
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 1
\pages 50--62
\mathnet{http://mi.mathnet.ru/zvmmf10816}
\crossref{https://doi.org/10.1134/S0044466919010150}
\elib{https://elibrary.ru/item.asp?id=36954031}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 1
\pages 46--58
\crossref{https://doi.org/10.1134/S0965542519010159}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000468086500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065715224}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10816
  • https://www.mathnet.ru/eng/zvmmf/v59/i1/p50
  • This publication is cited in the following 15 articles:
    1. M. A. Davydova, G. D. Rublev, “Stationary thermal front in the problem of reconstructing the semiconductor thermal conductivity coefficient using simulation data”, Theoret. and Math. Phys., 220:2 (2024), 1262–1281  mathnet  crossref  crossref  mathscinet  adsnasa
    2. Qian Yang, Mingkang Ni, “Asymptotics of the Solution to a Stationary Piecewise-Smooth Reaction-Diffusion-Advection Equation”, Chin. Ann. Math. Ser. B, 44:1 (2023), 81  crossref
    3. D. V. Lukyanenko, R. L. Argun, A. A. Borzunov, A. V. Gorbachev, V. D. Shinkarev, M. A. Shishlenin, A. G. Yagola, “On the Features of Numerical Solution of Coefficient Inverse Problems for Nonlinear Equations of the Reaction–Diffusion–Advection Type with Data of Various Types”, Diff Equat, 59:12 (2023), 1734  crossref
    4. Davydova M.A., Zakharova S.A., “Multidimensional Thermal Structures in the Singularly Perturbed Stationary Models of Heat and Mass Transfer With a Nonlinear Thermal Diffusion Coefficient”, J. Comput. Appl. Math., 400 (2022), 113731  crossref  mathscinet  zmath  isi  scopus
    5. Yang Q. Ni M., “Asymptotics of the Solution to a Piecewise-Smooth Quasilinear Second-Order Differential Equation”, J. Appl. Anal. Comput., 12:1 (2022), 256–269  crossref  mathscinet  isi
    6. V.T. Volkov, N. N. Nefedov, “Boundary control of fronts in a Burgers-type equation with modular adhesion and periodic amplification”, Theoret. and Math. Phys., 212:2 (2022), 1044–1052  mathnet  crossref  crossref  mathscinet  adsnasa
    7. R.L. Argun, V.T. Volkov, D.V. Lukyanenko, “Numerical simulation of front dynamics in a nonlinear singularly perturbed reaction–diffusion problem”, Journal of Computational and Applied Mathematics, 412 (2022), 114294  crossref
    8. M. A. Davydova, N. F. Elansky, S. A. Zakharova, O. V. Postylyakov, “Application of a numerical-asymptotic approach to the problem of restoring the parameters of a local stationary source of anthropogenic pollution”, Dokl. Math., 103:1 (2021), 26–31  mathnet  crossref  crossref  zmath  elib
    9. N. N. Nefedov, “Development of methods of asymptotic analysis of transition layers in reaction–diffusion–advection equations: theory and applications”, Comput. Math. Math. Phys., 61:12 (2021), 2068–2087  mathnet  mathnet  crossref  crossref  isi  scopus
    10. N. N. Nefedov, V. T. Volkov, “Asymptotic solution of the inverse problem for restoring the modular type source in Burgers' equation with modular advection”, J. Inverse Ill-Posed Probl., 28:5 (2020), 633–639  crossref  mathscinet  zmath  isi
    11. V.T. Volkov, N. N. Nefedov, “Asymptotic solution of coefficient inverse problems for Burgers-type equations”, Comput. Math. Math. Phys., 60:6 (2020), 950–959  mathnet  crossref  crossref  isi  elib
    12. M. K. Ni, X. T. Qi, N. T. Levashova, “Internal layer for a singularly perturbed equation with discontinuous right-hand side”, Differ. Equ., 56:10 (2020), 1276–1284  crossref  mathscinet  zmath  isi
    13. V D. Lukyanenko , M. A. Shishlenin, V. T. Volkov, “Asymptotic analysis of solving an inverse boundary value problem for a nonlinear singularly perturbed time-periodic reaction-diffusion-advection equation”, J. Inverse Ill-Posed Probl., 27:5 (2019), 745–758  crossref  mathscinet  zmath  isi
    14. A. L. Nechaeva, M. A. Davydova, “Periodic solutions with boundary layers in the problem of modeling the vertical transfer of an anthropogenic impurity in the troposphere”, Mosc. Univ. Phys. Bull., 74:6 (2019), 559–565  crossref  adsnasa  isi
    15. Evgenii Kuznetsov, Sergey Leonov, Katherine Tsapko, COMPUTATIONAL MECHANICS AND MODERN APPLIED SOFTWARE SYSTEMS (CMMASS'2019), 2181, COMPUTATIONAL MECHANICS AND MODERN APPLIED SOFTWARE SYSTEMS (CMMASS'2019), 2019, 020014  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:261
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025