Loading [MathJax]/jax/output/SVG/config.js
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2016, Volume 56, Number 4, Pages 523–534
DOI: https://doi.org/10.7868/S0044466916040098
(Mi zvmmf10368)
 

This article is cited in 25 scientific papers (total in 25 papers)

Efficient numerical methods for entropy-linear programming problems

A. V. Gasnikovab, E. V. Gasnikovac, Yu. E. Nesterovd, A. V. Chernovc

a Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
b National Research University "Higher School of Economics" (HSE), Moscow
c Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
d Center for Operat. Research and Econometrics Universite Catholigue de Louvain, Belgium
References:
Abstract: Entropy-linear programming (ELP) problems arise in various applications. They are usually written as the maximization of entropy (minimization of minus entropy) under affine constraints. In this work, new numerical methods for solving ELP problems are proposed. Sharp estimates for the convergence rates of the proposed methods are established. The approach described applies to a broader class of minimization problems for strongly convex functionals with affine constraints.
Key words: entropy-linear programming, fast gradient method, regularization, dual problem.
Funding agency Grant number
Russian Foundation for Basic Research 15-31-70001_мол_а_мос
14-01-00722_а
15-31-20571_мол_а_вед
Russian Science Foundation 14-50-00150
Gasnikova, Nesterov, and Chernov acknowledge the support of the Russian Foundation for Basic Research, project nos. 15-31-70001 mol_a_mos, 14-01-00722-a, and 15-31-20571-mol_a_ved. Theorem 2 was proved at the Institute for Information Transmission Problems of the Russian Academy of Sciences by Gasnikov, who acknowledges the support of the Russian Science Foundation, project no. 14-50-00150.
Received: 04.03.2015
Revised: 28.05.2015
English version:
Computational Mathematics and Mathematical Physics, 2016, Volume 56, Issue 4, Pages 514–524
DOI: https://doi.org/10.1134/S0965542516040084
Bibliographic databases:
Document Type: Article
UDC: 519.658
Language: Russian
Citation: A. V. Gasnikov, E. V. Gasnikova, Yu. E. Nesterov, A. V. Chernov, “Efficient numerical methods for entropy-linear programming problems”, Zh. Vychisl. Mat. Mat. Fiz., 56:4 (2016), 523–534; Comput. Math. Math. Phys., 56:4 (2016), 514–524
Citation in format AMSBIB
\Bibitem{GasGasNes16}
\by A.~V.~Gasnikov, E.~V.~Gasnikova, Yu.~E.~Nesterov, A.~V.~Chernov
\paper Efficient numerical methods for entropy-linear programming problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 4
\pages 523--534
\mathnet{http://mi.mathnet.ru/zvmmf10368}
\crossref{https://doi.org/10.7868/S0044466916040098}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3540556}
\elib{https://elibrary.ru/item.asp?id=25772311}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 4
\pages 514--524
\crossref{https://doi.org/10.1134/S0965542516040084}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376415600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971247449}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10368
  • https://www.mathnet.ru/eng/zvmmf/v56/i4/p523
  • This publication is cited in the following 25 articles:
    1. Egor Gladin, Alexander Gasnikov, Pavel Dvurechensky, “Accuracy Certificates for Convex Minimization with Inexact Oracle”, J Optim Theory Appl, 204:1 (2025)  crossref
    2. Peiyun Xue, Zhenan Dong, Yan Qiang, Wen Zheng, Jing Bai, Xiang Gao, “RankMatch: Environmental sound semi-supervised learning with audio classification propensity”, Applied Acoustics, 231 (2025), 110515  crossref
    3. Pavel Dvurechensky, Petr Ostroukhov, Alexander Gasnikov, César A. Uribe, Anastasiya Ivanova, “Near-optimal tensor methods for minimizing the gradient norm of convex functions and accelerated primal–dual tensor methods”, Optimization Methods and Software, 2024, 1  crossref
    4. Meruza Kubentayeva, Demyan Yarmoshik, Mikhail Persiianov, Alexey Kroshnin, Ekaterina Kotliarova, Nazarii Tupitsa, Dmitry Pasechnyuk, Alexander Gasnikov, Vladimir Shvetsov, Leonid Baryshev, Alexey Shurupov, “Primal-dual gradient methods for searching network equilibria in combined models with nested choice structure and capacity constraints”, Comput Manag Sci, 21:1 (2024)  crossref
    5. Olga Yufereva, Michael Persiianov, Pavel Dvurechensky, Alexander Gasnikov, Dmitry Kovalev, “Decentralized convex optimization on time-varying networks with application to Wasserstein barycenters”, Comput Manag Sci, 21:1 (2024)  crossref
    6. Yue Xie, Zhongjian Wang, Zhiwen Zhang, “Randomized Methods for Computing Optimal Transport Without Regularization and Their Convergence Analysis”, J Sci Comput, 100:2 (2024)  crossref
    7. Artem Vasin, Alexander Gasnikov, Pavel Dvurechensky, Vladimir Spokoiny, “Accelerated gradient methods with absolute and relative noise in the gradient”, Optimization Methods and Software, 38:6 (2023), 1180  crossref
    8. Nazarii Tupitsa, Pavel Dvurechensky, Darina Dvinskikh, Alexander Gasnikov, Encyclopedia of Optimization, 2023, 1  crossref
    9. A. S. Anikin, V. V. Matyukhin, D. A. Pasechnyuk, “Accelerated proximal envelopes: application to componentwise methods”, Comput. Math. Math. Phys., 62:2 (2022), 336–345  mathnet  mathnet  crossref  crossref  isi  scopus
    10. Runhua Wang, Yaohua Liu, Qing Ling, “Byzantine-Resilient Resource Allocation Over Decentralized Networks”, IEEE Trans. Signal Process., 70 (2022), 4711  crossref
    11. E. V. Kotlyarova, A. V. Gasnikov, E. V. Gasnikova, D. V. Yarmoshik, “Poisk ravnovesii v dvukhstadiinykh modelyakh raspredeleniya transportnykh potokov po seti”, Kompyuternye issledovaniya i modelirovanie, 13:2 (2021), 365–379  mathnet  crossref
    12. C. A. Uribe, S. Lee, A. Gasnikov, A. Nedic, “A dual approach for optimal algorithms in distributed optimization over networks”, Optim. Method Softw., 36:1 (2021), 171–210  crossref  mathscinet  zmath  isi
    13. E. A. Vorontsova, A. V. Gasnikov, P. E. Dvurechenskii, A. S. Ivanova, D. A. Pasechnyuk, “Numerical methods for the resource allocation problem in a computer network”, Comput. Math. Math. Phys., 61:2 (2021), 297–328  mathnet  crossref  crossref  isi  elib
    14. Dmitry Pasechnyuk, Vladislav Matyukhin, Lecture Notes in Computer Science, 12755, Mathematical Optimization Theory and Operations Research, 2021, 176  crossref
    15. C. A. Uribe, S. Lee, A. Gasnikov, A. Nedic, “A dual approach for optimal algorithms in distributed optimization over networks”, 2020 Information Theory and Applications Workshop (ITA), IEEE, 2020  isi
    16. Cesar A. Uribe, Soomin Lee, Alexander Gasnikov, Angelia Nedic, 2020 Information Theory and Applications Workshop (ITA), 2020, 1  crossref
    17. Pavel Dvurechensky, Alexander Gasnikov, Sergey Omelchenko, Alexander Tiurin, Lecture Notes in Computer Science, 12095, Mathematical Optimization Theory and Operations Research, 2020, 406  crossref
    18. D. R. Baymurzina, A. V. Gasnikov, E. V. Gasnikova, P. E. Dvurechenskii, E. I. Ershov, M. B. Kubentayeva, A. A. Lagunovskaya, “Universal method of searching for equilibria and stochastic equilibria in transportation networks”, Comput. Math. Math. Phys., 59:1 (2019), 19–33  mathnet  crossref  crossref  isi  elib
    19. A. V. Gasnikov, Yu. E. Nesterov, “Universal method for stochastic composite optimization problems”, Comput. Math. Math. Phys., 58:1 (2018), 48–64  mathnet  crossref  crossref  isi  elib
    20. P. Dvurechensky, D. Dvinskikh, A. Gasnikov, C. A. Uribe, A. Nedic, “Decentralize and randomize: faster algorithm for Wasserstein barycenters”, 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Advances in Neural Information Processing Systems, eds. S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. CesaBianchi, R. Garnett, 2018, 10760–10770  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:630
    Full-text PDF :172
    References:117
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025