Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2018, Volume 58, Number 1, Pages 52–69
DOI: https://doi.org/10.7868/S0044466918010052
(Mi zvmmf10659)
 

This article is cited in 44 scientific papers (total in 44 papers)

Universal method for stochastic composite optimization problems

A. V. Gasnikovab, Yu. E. Nesterovcd

a Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, Russia
b Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
c National Research University Higher School of Economics, Moscow, Russia
d Louvain-la-Neuve, Belgium
Citations (44)
References:
Abstract: A fast gradient method requiring only one projection is proposed for smooth convex optimization problems. The method has a visual geometric interpretation, so it is called the method of similar triangles (MST). Composite, adaptive, and universal versions of MST are suggested. Based on MST, a universal method is proposed for the first time for strongly convex problems (this method is continuous with respect to the strong convexity parameter of the smooth part of the functional). It is shown how the universal version of MST can be applied to stochastic optimization problems.
Key words: fast gradient method, composite optimization, universal method, strongly convex case, stochastic optimization, method of similar triangles.
Funding agency Grant number
Russian Science Foundation 17-11-01027
Russian Foundation for Basic Research 15-31-70001_мол_а_мос
15-31-20571_мол_а_вед
Received: 12.05.2016
Revised: 28.08.2016
English version:
Computational Mathematics and Mathematical Physics, 2018, Volume 58, Issue 1, Pages 48–64
DOI: https://doi.org/10.1134/S0965542518010050
Bibliographic databases:
Document Type: Article
UDC: 519.626
Language: Russian
Citation: A. V. Gasnikov, Yu. E. Nesterov, “Universal method for stochastic composite optimization problems”, Zh. Vychisl. Mat. Mat. Fiz., 58:1 (2018), 52–69; Comput. Math. Math. Phys., 58:1 (2018), 48–64
Citation in format AMSBIB
\Bibitem{GasNes18}
\by A.~V.~Gasnikov, Yu.~E.~Nesterov
\paper Universal method for stochastic composite optimization problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2018
\vol 58
\issue 1
\pages 52--69
\mathnet{http://mi.mathnet.ru/zvmmf10659}
\crossref{https://doi.org/10.7868/S0044466918010052}
\elib{https://elibrary.ru/item.asp?id=32282715}
\transl
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 1
\pages 48--64
\crossref{https://doi.org/10.1134/S0965542518010050}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000426674100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042697478}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10659
  • https://www.mathnet.ru/eng/zvmmf/v58/i1/p52
  • This publication is cited in the following 44 articles:
    1. Xuexue Zhang, Sanyang Liu, Nannan Zhao, “An accelerated decentralized stochastic optimization algorithm with inexact model”, Journal of Computational and Applied Mathematics, 459 (2025), 116383  crossref
    2. I. V. Podlipnova, Yu. V. Dorn, I. A. Sklonin, “Oblachnaya interpretatsiya entropiinoi modeli rascheta matritsy korrespondentsii”, Kompyuternye issledovaniya i modelirovanie, 16:1 (2024), 89–103  mathnet  crossref
    3. Meruza Kubentayeva, Demyan Yarmoshik, Mikhail Persiianov, Alexey Kroshnin, Ekaterina Kotliarova, Nazarii Tupitsa, Dmitry Pasechnyuk, Alexander Gasnikov, Vladimir Shvetsov, Leonid Baryshev, Alexey Shurupov, “Primal-dual gradient methods for searching network equilibria in combined models with nested choice structure and capacity constraints”, Comput Manag Sci, 21:1 (2024)  crossref
    4. Jelena Diakonikolas, Cristóbal Guzmán, “Complementary composite minimization, small gradients in general norms, and applications”, Math. Program., 2024  crossref
    5. S. S. Ablaev, A. N. Beznosikov, A. V. Gasnikov, D. M. Dvinskikh, A. V. Lobanov, S. M. Puchinin, F. S. Stonyakin, “On Some Works of Boris Teodorovich Polyak on the Convergence of Gradient Methods and Their Development”, Comput. Math. and Math. Phys., 64:4 (2024), 635  crossref
    6. Vladimir Solodkin, Savelii Chezhegov, Ruslan Nazikov, Aleksandr Beznosikov, Alexander Gasnikov, Lecture Notes in Computer Science, 14766, Mathematical Optimization Theory and Operations Research, 2024, 69  crossref
    7. V. S. Amaral, J. O. Lopes, P. S. M. Santos, G. N. Silva, “On the complexity of a quadratic regularization algorithm for minimizing nonsmooth and nonconvex functions”, Optimization Methods and Software, 2024, 1  crossref
    8. Anton Klimza, Alexander Gasnikov, Fedor Stonyakin, Mohammad Alkousa, “Universal methods for variational inequalities: Deterministic and stochastic cases”, Chaos, Solitons & Fractals, 187 (2024), 115418  crossref
    9. Eduard Gorbunov, Marina Danilova, Innokentiy Shibaev, Pavel Dvurechensky, Alexander Gasnikov, “High-Probability Complexity Bounds for Non-smooth Stochastic Convex Optimization with Heavy-Tailed Noise”, J Optim Theory Appl, 2024  crossref
    10. S. S. Ablaev, A. N. Beznosikov, A. V. Gasnikov, D. M. Dvinskikh, A. V. Lobanov, S. M. Puchinin, F. S. Stonyakin, “On Some Works of Boris Teodorovich Polyak on the Convergence of Gradient Methods and Their Development”, Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, 64:4 (2024), 587  crossref
    11. M. S. Alkousa, A. V. Gasnikov, E. L. Gladin, I. A. Kuruzov, D. A. Pasechnyuk, F. S. Stonyakin, “Solving strongly convex-concave composite saddle-point problems with low dimension of one group of variable”, Sb. Math., 214:3 (2023), 285–333  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    12. Evgeniya V. Gasnikova, Aleksandr V. Gasnikov, Demyan V. Yarmoshik, Meruza B. Kubentaeva, Mikhail I. Persiyanov, Irina V. Podlipnova, Ekaterina V. Kotlyarova, Ilya A. Sklonin, Elena D. Podobnaya, Vladislav V. Matyukhin, “O mnogostadiinoi transportnoi modeli i dostatochnykh usloviyakh ee potentsialnosti”, MTIP, 15:2 (2023), 3–17  mathnet
    13. N. A. Iltyakov, M. A. Obozov, I. M. Dyshlevski, D. V. Yarmoshik, M. B. Kubentaeva, A. V. Gasnikov, E. V. Gasnikova, “On Accelerated Coordinate Descent Methods for Searching Equilibria in Two-Stage Transportation Equilibrium Traffic Flow Distribution Model”, Programmirovanie, 2023, no. 6, 36  crossref
    14. Pavel Dvurechensky, Alexander Gasnikov, Alexander Tyurin, Vladimir Zholobov, Springer Proceedings in Mathematics & Statistics, 425, Foundations of Modern Statistics, 2023, 511  crossref
    15. T. A. Zvonareva, S. I. Kabanikhin, O. I. Krivorot'ko, “Numerical algorithm for source determination in a diffusion–logistic model from integral data based on tensor optimization”, Comput. Math. Math. Phys., 63:9 (2023), 1654–1663  mathnet  mathnet  crossref  crossref
    16. Nikita Kornilov, Alexander Gasnikov, Pavel Dvurechensky, Darina Dvinskikh, “Gradient-free methods for non-smooth convex stochastic optimization with heavy-tailed noise on convex compact”, Comput Manag Sci, 20:1 (2023)  crossref
    17. Artem Vasin, Alexander Gasnikov, Pavel Dvurechensky, Vladimir Spokoiny, “Accelerated gradient methods with absolute and relative noise in the gradient”, Optimization Methods and Software, 38:6 (2023), 1180  crossref
    18. N. A. Il'tyakov, M. A. Obozov, I. M. Dyshlevski, D. V. Yarmoshik, M. B. Kubentaeva, A. V. Gasnikov, E. V. Gasnikova, “On Accelerated Coordinate Descent Methods for Searching Equilibria in Two-Stage Transportation Equilibrium Traffic Flow Distribution Model”, Program Comput Soft, 49:6 (2023), 513  crossref
    19. Adrien Taylor, Yoel Drori, “An optimal gradient method for smooth strongly convex minimization”, Math. Program., 199:1-2 (2023), 557  crossref
    20. E. V. Gasnikova, A. V. Gasnikov, D. V. Yarmoshik, M. B. Kubentaeva, M. I. Persianov, I. V. Podlipnova, E. V. Kotlyarova, I. A. Sklonin, E. D. Podobnaya, V. V. Matyukhin, “Multistage Transportation Model and Sufficient Conditions for Its Potentiality”, Dokl. Math., 108:S1 (2023), S139  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:689
    References:154
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025