Abstract:
A nonlocal existence theorem for the weak solution for an initial-boundary value problem for the dynamic model of thermoviscoelasticity with memory along trajectories of motion in the planar case is established.
Key words:
thermoviscoelastic medium, equations of motion, initial-boundary value problem, weak solution.
Citation:
V. P. Orlov, M. I. Parshin, “On a problem in the dynamics of a thermoviscoelastic medium with memory”, Zh. Vychisl. Mat. Mat. Fiz., 55:4 (2015), 653–668; Comput. Math. Math. Phys., 55:4 (2015), 650–665
\Bibitem{OrlPar15}
\by V.~P.~Orlov, M.~I.~Parshin
\paper On a problem in the dynamics of a thermoviscoelastic medium with memory
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 4
\pages 653--668
\mathnet{http://mi.mathnet.ru/zvmmf10192}
\crossref{https://doi.org/10.7868/S0044466915010172}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3343127}
\zmath{https://zbmath.org/?q=an:06458240}
\elib{https://elibrary.ru/item.asp?id=23299893}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 4
\pages 650--665
\crossref{https://doi.org/10.1134/S0965542515010170}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000354067600012}
\elib{https://elibrary.ru/item.asp?id=24028040}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928911001}
Linking options:
https://www.mathnet.ru/eng/zvmmf10192
https://www.mathnet.ru/eng/zvmmf/v55/i4/p653
This publication is cited in the following 6 articles:
Mikhail Turbin, Anastasiia Ustiuzhaninova, “Trajectory and Global Attractors for the Kelvin–Voigt Model Taking into Account Memory along Fluid Trajectories”, Mathematics, 12:2 (2024), 266
Mikhail Turbin, Anastasiia Ustiuzhaninova, “Existence of weak solution to initial-boundary value problem for finite order Kelvin–Voigt fluid motion model”, Bol. Soc. Mat. Mex., 29:2 (2023)
V. G. Zvyagin, V. P. Orlov, “Strong solutions of one model of dynamics of thermoviscoelasticity of a continuous medium with memory”, Russian Math. (Iz. VUZ), 65:6 (2021), 84–89
V. G. Zvyagin, V. P. Orlov, “On regularity of weak solutions to a generalized Voigt model of viscoelasticity”, Comput. Math. Math. Phys., 60:11 (2020), 1872–1888
A. V. Zvyagin, V. G. Zvyagin, D. M. Polyakov, “Dissipative solvability of an alpha model of fluid flow with memory”, Comput. Math. Math. Phys., 59:7 (2019), 1185–1198
V. G. Zvyagin, V. P. Orlov, “On a model of thermoviscoelasticity of Jeffreys–Oldroyd type”, Comput. Math. Math. Phys., 56:10 (2016), 1803–1812