Abstract:
A parallel computation technology for modeling fluid dynamics problems by finite-volume and finite-difference methods of high accuracy is presented. The development of an algorithm, the design of a software implementation, and the creation of parallel programs for computations on large-scale computing systems are considered. The presented parallel technology is based on a multilevel parallel model combining various types of parallelism: with shared and distributed memory and with multiple and single instruction streams to multiple data flows.
This publication is cited in the following 13 articles:
V. A. Titarev, A. A. Frolova, V. A. Rykov, P. V. Vashchenkov, A. A. Shevyrin, Y. A. Bondar, “Comparison of the Shakhov kinetic equation and DSMC method as applied to space vehicle aerothermodynamics”, J. Comput. Appl. Math., 364 (2020), 112354
A. V. Gorobets, P. A. Bakhvalov, A. P. Duben, P. V. Rodionov, “Acceleration of NOISEtte code for scale-resolving supercomputer simulations of turbulent flows”, Lobachevskii J. Math., 41:8, SI (2020), 1463–1474
A. V. Gorobets, M. I. Neiman-zade, S. K. Okunev, A. A. Kalyakin, S. A. Soukov, “Performance of Elbrus-8C processor in supercomputer CFD simulations”, Math. Models Comput. Simul., 11:6 (2019), 914–923
A. Gorobets, “Parallel algorithm of the NOISEtte code for CFD and CAA simulations”, Lobachevskii J. Math., 39:4 (2018), 524–532
V. A. Titarev, “Application of model kinetic equations to hypersonic rarefied gas flows”, Comput. Fluids, 169:SI (2018), 62–70
A. V. Gorobets, M. I. Neiman-zade, S. K. Okunev, A. A. Kalyakin, S. A. Sukov, “Proizvoditelnost protsessora Elbrus-8S v superkompyuternykh prilozheniyakh vychislitelnoi gazovoi dinamiki”, Preprinty IPM im. M. V. Keldysha, 2018, 152, 20 pp.
P. A. Bakhvalov, A. V. Gorobets, “K voprosu ob effektivnoi parallelnoi realizatsii vershinno-tsentrirovannykh skhem na skolzyaschikh setkakh”, Preprinty IPM im. M. V. Keldysha, 2018, 277, 16 pp.
M. N. Petrov, A. A. Tambova, V. A. Titarev, S. V. Utyuzhnikov, A. V. Chikitkin, “FlowModellium software package for calculating high-speed flows of compressible fluid”, Comput. Math. Math. Phys., 58:11 (2018), 1865–1886
Vlasenko V.V. Matyash E.S. Molev S.S. Sabelnikov V.A. Talyzin V.A., “Simulation of Flow Development in High-Speed Combustor in 2D and 3D Formulations”, AIP Conference Proceedings, 2027, ed. Fomin V., Amer Inst Physics, 2018, 030076-1
P. A. Bakhvalov, T. K. Kozubskaya, “Construction of edge-based 1-exact schemes for solving the Euler equations on hybrid unstructured meshes”, Comput. Math. Math. Phys., 57:4 (2017), 680–697
V. A. Titarev, “Numerical modeling of high-speed rarefied gas flows over blunt bodies using model kinetic equations”, Eur. J. Mech. B-Fluids, 64:SI (2017), 112–117
M. N. Petrov, V. A. Titarev, S. V. Utyuzhnikov, A. V. Chikitkin, “A multithreaded OpenMP implementation of the LU-SGS method using the multilevel decomposition of the unstructured computational mesh”, Comput. Math. Math. Phys., 57:11 (2017), 1856–1865
V. A. Titarev, S. V. Utyuzhnikov, A. V. Chikitkin, “OpenMP + MPI parallel implementation of a numerical method for solving a kinetic equation”, Comput. Math. Math. Phys., 56:11 (2016), 1919–1928