Loading [MathJax]/jax/output/SVG/config.js
Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1997, Volume 240, Pages 166–228 (Mi znsl474)  

This article is cited in 27 scientific papers (total in 27 papers)

On representations of the infinite symmetric group

A. Yu. Okounkov
Abstract: We prove a classification theorem for admissible representation of the Gelfand pair
$$ S(\infty)\times S(\infty)\supset\operatorname{diag}S(\infty) $$
and two other Gelfand pairs of hyperoctohedral type. We prove that the list of admissible representations given by G. Olshanski is complete. This generalizes Thoma's description of the characters of $S(\infty)$. An explicit construction for representations from a dense subset of the admissible dual was given by G. Olshanski. We construct the remaining representations using an operation we call the mixture of representations.
Received: 10.11.1996
English version:
Journal of Mathematical Sciences (New York), 1999, Volume 96, Issue 5, Pages 3550–3589
DOI: https://doi.org/10.1007/BF02175834
Bibliographic databases:
UDC: 517.4+519.217
Language: Russian
Citation: A. Yu. Okounkov, “On representations of the infinite symmetric group”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Zap. Nauchn. Sem. POMI, 240, POMI, St. Petersburg, 1997, 166–228; J. Math. Sci. (New York), 96:5 (1999), 3550–3589
Citation in format AMSBIB
\Bibitem{Oko97}
\by A.~Yu.~Okounkov
\paper On representations of the infinite symmetric group
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~II
\serial Zap. Nauchn. Sem. POMI
\yr 1997
\vol 240
\pages 166--228
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl474}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1691646}
\zmath{https://zbmath.org/?q=an:0959.20016}
\transl
\jour J. Math. Sci. (New York)
\yr 1999
\vol 96
\issue 5
\pages 3550--3589
\crossref{https://doi.org/10.1007/BF02175834}
Linking options:
  • https://www.mathnet.ru/eng/znsl474
  • https://www.mathnet.ru/eng/znsl/v240/p166
  • This publication is cited in the following 27 articles:
    1. Pablo Diaz, “Backgrounds from tensor models: A proposal”, Phys. Rev. D, 103:6 (2021)  crossref
    2. N. I. Nessonov, “Characters of the Infinite Symmetric Inverse Semigroup”, Funct. Anal. Appl., 54:3 (2020), 179–187  mathnet  crossref  crossref  mathscinet  isi
    3. Matveev K., “Macdonald-Positive Specializations of the Algebra of Symmetric Functions: Proof of the Kerov Conjecture”, Ann. Math., 189:1 (2019), 277–316  crossref  mathscinet  zmath  isi  scopus
    4. Dudko A., Grigorchuk R., “On Diagonal Actions of Branch Groups and the Corresponding Characters”, J. Funct. Anal., 274:11 (2018), 3033–3055  crossref  mathscinet  zmath  isi  scopus  scopus
    5. Vershik A.M., “Asymptotic theory of path spaces of graded graphs and its applications”, Jap. J. Math., 11:2 (2016), 151–218  crossref  mathscinet  zmath  isi  scopus
    6. Borger J., Grinberg D., “Boolean Witt vectors and an integral Edrei?Thoma theorem”, Sel. Math.-New Ser., 22:2 (2016), 595–629  crossref  mathscinet  zmath  isi  elib  scopus
    7. Valentin Féray, Pierre-Loïc Méliot, Ashkan Nikeghbali, SpringerBriefs in Probability and Mathematical Statistics, Mod-ϕ Convergence, 2016, 123  crossref
    8. A. M. Vershik, N. I. Nessonov, “Stable representations of the infinite symmetric group”, Izv. Math., 79:6 (2015), 1184–1214  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. Bufetov A. Gorin V., “Stochastic Monotonicity in Young Graph and Thoma Theorem”, Int. Math. Res. Notices, 2015, no. 23, 12920–12940  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    10. A. M. Vershik, “The Problem of Describing Central Measures on the Path Spaces of Graded Graphs”, Funct. Anal. Appl., 48:4 (2014), 256–271  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    11. Dudko A. Medynets K., “On Characters of Inductive Limits of Symmetric Groups”, J. Funct. Anal., 264:7 (2013), 1565–1598  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    12. N. I. Nessonov, “KMS States on $\mathfrak{S}_\infty$ Invariant with Respect to the Young Subgroups”, Funct. Anal. Appl., 47:2 (2013), 127–137  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    13. N. I. Nessonov, “Representations of $\mathfrak{S}_\infty$ admissible with respect to Young subgroups”, Sb. Math., 203:3 (2012), 424–458  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    14. Lam T., Pylyavskyy P., “Total Positivity in Loop Groups, I: Whirls and Curls”, Adv. Math., 230:3 (2012), 1222–1271  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    15. Makoto Yamashita, “On subfactors arising from asymptotic representations of symmetric groups”, Proc. Amer. Math. Soc., 140:1 (2011), 249  crossref
    16. A. V. Dudko, N. I. Nessonov, “Characters of projective representations of the infinite generalized symmetric group”, Sb. Math., 199:10 (2008), 1421–1450  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    17. Strahov E., “Generalized characters of the symmetric group”, Advances in Mathematics, 212:1 (2007), 109–142  crossref  mathscinet  zmath  isi  scopus  scopus
    18. A. V. Dudko, “Tame representations of the group $\mathrm{GL}(\infty,\mathbb F_q)$”, St. Petersburg Math. J., 18:2 (2007), 223–239  mathnet  crossref  mathscinet  zmath  elib
    19. Gnedin A., Olshanski G., “Coherent permutations with descent statistic and the boundary problem for the graph of zigzag diagrams”, International Mathematics Research Notices, 2006, 51968  mathscinet  zmath  isi  elib
    20. Goodman F.M., Hauschild H., “Affine Birman-Wenzl-Murakami algebras and tangles in the solid torus”, Fund Math, 190 (2006), 77–137  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:485
    Full-text PDF :224
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025