Abstract:
We prove a classification theorem for admissible representation of the Gelfand pair
$$
S(\infty)\times S(\infty)\supset\operatorname{diag}S(\infty)
$$
and two other Gelfand pairs of hyperoctohedral type. We prove that the list of admissible representations given by G. Olshanski is complete. This generalizes Thoma's description of the characters of $S(\infty)$. An explicit construction for representations from a dense subset of the admissible dual was given by G. Olshanski. We construct the remaining representations using an operation we call the mixture of representations.
Citation:
A. Yu. Okounkov, “On representations of the infinite symmetric group”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Zap. Nauchn. Sem. POMI, 240, POMI, St. Petersburg, 1997, 166–228; J. Math. Sci. (New York), 96:5 (1999), 3550–3589
\Bibitem{Oko97}
\by A.~Yu.~Okounkov
\paper On representations of the infinite symmetric group
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~II
\serial Zap. Nauchn. Sem. POMI
\yr 1997
\vol 240
\pages 166--228
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl474}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1691646}
\zmath{https://zbmath.org/?q=an:0959.20016}
\transl
\jour J. Math. Sci. (New York)
\yr 1999
\vol 96
\issue 5
\pages 3550--3589
\crossref{https://doi.org/10.1007/BF02175834}
Linking options:
https://www.mathnet.ru/eng/znsl474
https://www.mathnet.ru/eng/znsl/v240/p166
This publication is cited in the following 27 articles:
Pablo Diaz, “Backgrounds from tensor models: A proposal”, Phys. Rev. D, 103:6 (2021)
N. I. Nessonov, “Characters of the Infinite Symmetric Inverse Semigroup”, Funct. Anal. Appl., 54:3 (2020), 179–187
Matveev K., “Macdonald-Positive Specializations of the Algebra of Symmetric Functions: Proof of the Kerov Conjecture”, Ann. Math., 189:1 (2019), 277–316
Dudko A., Grigorchuk R., “On Diagonal Actions of Branch Groups and the Corresponding Characters”, J. Funct. Anal., 274:11 (2018), 3033–3055
Vershik A.M., “Asymptotic theory of path spaces of graded graphs and its applications”, Jap. J. Math., 11:2 (2016), 151–218
Borger J., Grinberg D., “Boolean Witt vectors and an integral Edrei?Thoma theorem”, Sel. Math.-New Ser., 22:2 (2016), 595–629
Valentin Féray, Pierre-Loïc Méliot, Ashkan Nikeghbali, SpringerBriefs in Probability and Mathematical Statistics, Mod-ϕ Convergence, 2016, 123
A. M. Vershik, N. I. Nessonov, “Stable representations of the infinite symmetric group”, Izv. Math., 79:6 (2015), 1184–1214
Bufetov A. Gorin V., “Stochastic Monotonicity in Young Graph and Thoma Theorem”, Int. Math. Res. Notices, 2015, no. 23, 12920–12940
A. M. Vershik, “The Problem of Describing Central Measures on the Path Spaces of Graded Graphs”, Funct. Anal. Appl., 48:4 (2014), 256–271
Dudko A. Medynets K., “On Characters of Inductive Limits of Symmetric Groups”, J. Funct. Anal., 264:7 (2013), 1565–1598
N. I. Nessonov, “KMS States on $\mathfrak{S}_\infty$ Invariant with Respect to the Young Subgroups”, Funct. Anal. Appl., 47:2 (2013), 127–137
N. I. Nessonov, “Representations of $\mathfrak{S}_\infty$ admissible with respect to Young subgroups”, Sb. Math., 203:3 (2012), 424–458
Lam T., Pylyavskyy P., “Total Positivity in Loop Groups, I: Whirls and Curls”, Adv. Math., 230:3 (2012), 1222–1271
Makoto Yamashita, “On subfactors arising from asymptotic representations of symmetric groups”, Proc. Amer. Math. Soc., 140:1 (2011), 249
A. V. Dudko, N. I. Nessonov, “Characters of projective representations of the infinite generalized symmetric group”, Sb. Math., 199:10 (2008), 1421–1450
Strahov E., “Generalized characters of the symmetric group”, Advances in Mathematics, 212:1 (2007), 109–142
A. V. Dudko, “Tame representations of the group $\mathrm{GL}(\infty,\mathbb F_q)$”, St. Petersburg Math. J., 18:2 (2007), 223–239
Gnedin A., Olshanski G., “Coherent permutations with descent statistic and the boundary problem for the graph of zigzag diagrams”, International Mathematics Research Notices, 2006, 51968
Goodman F.M., Hauschild H., “Affine Birman-Wenzl-Murakami algebras and tangles in the solid torus”, Fund Math, 190 (2006), 77–137