Abstract:
The aim of this paper is to show that the well-studied families of GEM and Poisson–Dirichlet measures may be obtained as distributions of normalized cycle lengths on the space of vitual pemutations (i.e., elements of a projective limit of symmetric groups). Two characterizations of Ewens distibutions are given. Bibliography: 9 titles.
Citation:
N. V. Tsilevich, “Distribution of cycle lengths of infinite permutations”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Zap. Nauchn. Sem. POMI, 223, POMI, St. Petersburg, 1995, 148–161; J. Math. Sci. (New York), 87:6 (1997), 4072–4081
\Bibitem{Tsi95}
\by N.~V.~Tsilevich
\paper Distribution of cycle lengths of infinite permutations
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~I
\serial Zap. Nauchn. Sem. POMI
\yr 1995
\vol 223
\pages 148--161
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4385}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1374318}
\zmath{https://zbmath.org/?q=an:0909.60011|0887.60011}
\transl
\jour J. Math. Sci. (New York)
\yr 1997
\vol 87
\issue 6
\pages 4072--4081
\crossref{https://doi.org/10.1007/BF02355803}
Linking options:
https://www.mathnet.ru/eng/znsl4385
https://www.mathnet.ru/eng/znsl/v223/p148
This publication is cited in the following 6 articles:
Valentin Bahier, “On a limiting point process related to
modified permutation matrices”, ALEA, 17:1 (2020), 65
Valentin Bahier, “Characteristic polynomials of modified permutation matrices at microscopic scale”, Stochastic Processes and their Applications, 129:11 (2019), 4335
Joseph Najnudel, Ashkan Nikeghbali, Lecture Notes in Mathematics, 2123, Séminaire de Probabilités XLVI, 2014, 481
Paul Bourgade, Joseph Najnudel, Ashkan Nikeghbali, “A Unitary Extension of Virtual Permutations”, International Mathematics Research Notices, 2013:18 (2013), 4101
Bourgade P., Nikeghbali A., Rouault A., “Ewens Measures on Compact Groups and Hypergeometric Kernels”, Seminaire de Probabilites XLIII, Lecture Notes in Mathematics, 2006, 2011, 351–377
N. V. Tsilevich, “Stationary random partitions of positive integers”, Theory Probab. Appl., 44:1 (2000), 60–74