Abstract:
This paper gives a description of stationary random partitions of positive integers (equivalently, stationary coherent sequences of random permutations) under the action of the infinite symmetric group. Equivalently, all stationary coherent sequences of random permutations are described. This result gives a new characterization of the Poisson–Dirichlet distribution PD(1) with the unit parameter, which turns out to be the unique invariant distribution for a family of Markovian operators on the infinite-dimensional simplex. This result also provides a new characterization of the Haar measure on the projective limit of finite symmetric groups.
Keywords:
random partitions, random permutations, stationary distribution, Markovian operator, Poisson–Dirichlet distribution.
Citation:
N. V. Tsilevich, “Stationary random partitions of positive integers”, Teor. Veroyatnost. i Primenen., 44:1 (1999), 55–73; Theory Probab. Appl., 44:1 (2000), 60–74
This publication is cited in the following 16 articles:
Nils Caci, Peter Mühlbacher, Daniel Ueltschi, Stefan Wessel, “Poisson-Dirichlet distributions and weakly first-order spin-nematic phase transitions”, Phys. Rev. B, 107:2 (2023)
Sam Olesker-Taylor, “Cutoff for rewiring dynamics on perfect matchings”, Ann. Appl. Probab., 33:1 (2023)
Benassi C., Ueltschi D., “Loop Correlations in Random Wire Models”, Commun. Math. Phys., 374:2 (2020), 525–547
Bjoernberg J.E., Kotowski M., Lees B., Milos P., “The Interchange Process With Reversals on the Complete Graph”, Electron. J. Probab., 24 (2019), 108
Kammoun M.S., “Monotonous Subsequences and the Descent Process of Invariant Random Permutations”, Electron. J. Probab., 23 (2018), 118
Joseph Najnudel, Ashkan Nikeghbali, Lecture Notes in Mathematics, 2123, Séminaire de Probabilités XLVI, 2014, 481
Grosskinsky S., Lovisolo A.A., Ueltschi D., “Lattice Permutations and Poisson-Dirichlet Distribution of Cycle Lengths”, J. Stat. Phys., 146:6 (2012), 1105–1121
Goldschmidt Ch., Ueltschi D., Windridge P., “Quantum Heisenberg Models and their Probabilistic Representations”, Entropy and the Quantum II, Contemporary Mathematics, 552, eds. Sims R., Ueltschi D., Amer Mathematical Soc, 2011, 177–224
A. M. Vershik, “Does There Exist a Lebesgue Measure in the Infinite-Dimensional Space?”, Proc. Steklov Inst. Math., 259 (2007), 248–272
Gamburd A., “Poisson-Dirichlet distribution for random Belyi surfaces”, Ann. Probab., 34:5 (2006), 1827–1848
Brooks R., Makover E., “Random construction of Riemann surfaces”, J. Differential Geom., 68:1 (2004), 121–157
Diaconis P., Mayer-Wolf E., Zeitouni O., Zerner M.P.W., “The Poisson–Dirichlet law is the unique invariant distribution for uniform split–merge transformations”, Ann. Probab., 32:1B (2004), 915–938
Brooks R., “A statistical model of Riemann surfaces”, Complex analysis and dynamical systems, Contemp. Math., 364, Amer. Math. Soc., Providence, RI, 2004, 15–25
Pitman J., “Poisson–Dirichlet and GEM invariant distributions for split-and-merge transformations of an interval partition”, Combin. Probab. Comput., 11:5 (2002), 501–514
Eddy Mayer-Wolf, Ofer Zeitouni, Martin Zerner, “Asymptotics of Certain Coagulation-Fragmentation Processes and Invariant Poisson-Dirichlet Measures”, Electron. J. Probab., 7:none (2002)