Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2009, Volume 364, Pages 148–165 (Mi znsl3155)  

This article is cited in 8 scientific papers (total in 8 papers)

The rate of Gaussian strong approximation for the sums of i.i.d. multidimensional random vectors

A. Yu. Zaitsev

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (263 kB) Citations (8)
References:
Abstract: The aim of this paper is to derive new optimal bounds for the rate of strong Gaussian approximation of sums of i.i.d. Rd-valued random variables ξj having finite moments of the form EH(|ξj|), where H(x) is a monotone function growing not slower than x2+δ and not faster than ecx. We obtain some generalizations of the results of U. Einmahl (1989). Bibl. – 44 titles.
Received: 05.11.2008
English version:
Journal of Mathematical Sciences (New York), 2010, Volume 163, Issue 4, Pages 399–408
DOI: https://doi.org/10.1007/s10958-009-9682-x
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: A. Yu. Zaitsev, “The rate of Gaussian strong approximation for the sums of i.i.d. multidimensional random vectors”, Probability and statistics. Part 14–2, Zap. Nauchn. Sem. POMI, 364, POMI, St. Petersburg, 2009, 148–165; J. Math. Sci. (N. Y.), 163:4 (2010), 399–408
Citation in format AMSBIB
\Bibitem{Zai09}
\by A.~Yu.~Zaitsev
\paper The rate of Gaussian strong approximation for the sums of i.i.d. multidimensional random vectors
\inbook Probability and statistics. Part~14--2
\serial Zap. Nauchn. Sem. POMI
\yr 2009
\vol 364
\pages 148--165
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3155}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2010
\vol 163
\issue 4
\pages 399--408
\crossref{https://doi.org/10.1007/s10958-009-9682-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70549109096}
Linking options:
  • https://www.mathnet.ru/eng/znsl3155
  • https://www.mathnet.ru/eng/znsl/v364/p148
  • This publication is cited in the following 8 articles:
    1. G. A. Krylova, “The estimation of traffic intensity parameter for a single-channel queueing system with regenerative input flow”, Moscow University Mathematics Bulletin, 77:5 (2022), 242–246  mathnet  crossref  mathscinet  zmath  elib
    2. Lifshits M.A. Nikitin Ya.Yu. Petrov V.V. Zaitsev A.Yu. Zinger A.A., “Toward the History of the Saint Petersburg School of Probability and Statistics. i. Limit Theorems For Sums of Independent Random Variables”, Vestn. St Petersb. Univ.-Math., 51:2 (2018), 144–163  crossref  mathscinet  zmath  isi  scopus
    3. Hiroshi Takahashi, Shuya Kanagawa, Ken-ichi Yoshihara, “Asymptotic Behavior of Solutions of Some Difference Equations Defined by Weakly Dependent Random Vectors”, Stochastic Analysis and Applications, 33:4 (2015), 740  crossref
    4. A. Yu. Zaitsev, “The accuracy of strong Gaussian approximation for sums of independent random vectors”, Russian Math. Surveys, 68:4 (2013), 721–761  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    5. F. Götze, A. Yu. Zaitsev, “Estimates for the rate of strong approximation in Hilbert space”, Siberian Math. J., 52:4 (2011), 628–638  mathnet  crossref  mathscinet  isi
    6. A. I. Sakhanenko, “A general estimate in the invariance principle”, Siberian Math. J., 52:4 (2011), 696–710  mathnet  crossref  mathscinet  isi
    7. A. Yu. Zaitsev, “Optimal estimates for the rate of strong Gaussian approximation in the infinite dimensional invariance principle”, J. Math. Sci. (N. Y.), 188:6 (2013), 689–693  mathnet  crossref  mathscinet
    8. F. Götze, A. Yu. Zaitsev, “Rates of approximation in the multidimensional invariance principle for sums of i.i.d. random vectors with finite moments”, J. Math. Sci. (N. Y.), 167:4 (2010), 495–500  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:371
    Full-text PDF :113
    References:73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025