Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2013, Volume 68, Issue 4, Pages 721–761
DOI: https://doi.org/10.1070/RM2013v068n04ABEH004851
(Mi rm9537)
 

This article is cited in 14 scientific papers (total in 14 papers)

The accuracy of strong Gaussian approximation for sums of independent random vectors

A. Yu. Zaitsevab

a St. Petersburg State University
b St. Petersburg Department of V. A. Steklov Institute of the Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: This paper is a survey of recent results on the accuracy of strong Gaussian approximation for sums of independent random vectors. They give multidimensional generalizations of one-dimensional results due to Komlós, Major, and Tusnády, as well as to Sakhanenko, and improve upon Einmahl's multidimensional results. Infinite-dimensional analogues of these results are also presented.
Bibliography: 102 titles.
Keywords: multidimensional invariance principle, strong approximation, sums of independent random vectors.
Received: 09.04.2013
Bibliographic databases:
Document Type: Article
UDC: 519.2
MSC: 60F17
Language: English
Original paper language: Russian
Citation: A. Yu. Zaitsev, “The accuracy of strong Gaussian approximation for sums of independent random vectors”, Russian Math. Surveys, 68:4 (2013), 721–761
Citation in format AMSBIB
\Bibitem{Zai13}
\by A.~Yu.~Zaitsev
\paper The accuracy of strong Gaussian approximation for sums of independent random vectors
\jour Russian Math. Surveys
\yr 2013
\vol 68
\issue 4
\pages 721--761
\mathnet{http://mi.mathnet.ru/eng/rm9537}
\crossref{https://doi.org/10.1070/RM2013v068n04ABEH004851}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3154816}
\zmath{https://zbmath.org/?q=an:1287.60044}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013RuMaS..68..721Z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000326685900003}
\elib{https://elibrary.ru/item.asp?id=20423511}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84888350928}
Linking options:
  • https://www.mathnet.ru/eng/rm9537
  • https://doi.org/10.1070/RM2013v068n04ABEH004851
  • https://www.mathnet.ru/eng/rm/v68/i4/p129
  • This publication is cited in the following 14 articles:
    1. Péter Bálint, Dalia Terhesiu, “Generalized law of the iterated logarithm for the Lorentz gas with infinite horizon”, Electron. J. Probab., 30:none (2025)  crossref
    2. Matias D. Cattaneo, Michael Jansson, Xinwei Ma, “Local regression distribution estimators”, Journal of Econometrics, 240:2 (2024), 105074  crossref
    3. C. Cuny, J. Dedecker, A. Korepanov, F. Merlevède, “Rates in Almost Sure Invariance Principle for Nonuniformly Hyperbolic Maps”, Commun. Math. Phys., 405:10 (2024)  crossref
    4. Fabian Mies, Ansgar Steland, “Sequential Gaussian approximation for nonstationary time series in high dimensions”, Bernoulli, 29:4 (2023)  crossref
    5. E. O. Lenena, “Accuracy of estimation of the vector of queue lengths for open Jackson networks”, Theory Probab. Appl., 67:4 (2022), 633–639  mathnet  crossref  crossref  mathscinet
    6. Elena Bashtova, Alexey Shashkin, “Strong Gaussian approximation for cumulative processes”, Stochastic Processes and their Applications, 150 (2022), 1  crossref
    7. D. I. Blinova, M. A. Lifshits, “Energy of Taut Strings Accompanying a Wiener Process and Random Walk in a Band of Variable Width”, J Math Sci, 268:5 (2022), 573  crossref
    8. Lifshits M.A., Siuniaev A.A., “Energy of Taut Strings Accompanying Random Walk”, Prob. Math. Stat.., 41:1 (2021), 9–23  crossref  mathscinet  isi
    9. Elena Bashtova, Elena Lenena, Springer Proceedings in Mathematics & Statistics, 371, Recent Developments in Stochastic Methods and Applications, 2021, 318  crossref
    10. Cattaneo M.D., Farrell M.H., Feng Y., “Large Sample Properties of Partitioning-Based Series Estimators”, Ann. Stat., 48:3 (2020), 1718–1741  crossref  mathscinet  zmath  isi  scopus
    11. D. I. Blinova, M. A. Lifshits, “Energiya natyanutykh strun, soprovozhdayuschikh vinerovskii protsess i sluchainoe bluzhdanie v polose peremennoi shiriny”, Veroyatnost i statistika. 29, Zap. nauchn. sem. POMI, 495, POMI, SPb., 2020, 64–86  mathnet
    12. M. A. Lifshits, Ya. Yu. Nikitin, V. V. Petrov, A. Yu. Zaitsev, A. A. Zinger, “Toward the history of the Saint Petersburg school of probability and statistics. I. Limit theorems for sums of independent random variables”, Vestn. St Petersb. Univ. Math., 51:2 (2018), 144–163  crossref  crossref  mathscinet  zmath  isi  elib  scopus
    13. A. Korepanov, “Rates in almost sure invariance principle for dynamical systems with some hyperbolicity”, Commun. Math. Phys., 363:1 (2018), 173–190  crossref  mathscinet  isi  scopus
    14. P. Kevei, D. M. Mason, “Couplings and strong approximations to time-dependent empirical processes based on i.i.d. fractional Brownian motions”, J. Theor. Probab., 30:3 (2017), 729–770  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:835
    Russian version PDF:434
    English version PDF:256
    References:62
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025