Loading [MathJax]/jax/output/CommonHTML/jax.js
Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2002, Volume 292, Pages 62–91 (Mi znsl1667)  

This article is cited in 8 scientific papers (total in 8 papers)

Spreading maps (polymorphisms), symmetries of Poisson processes, and matching summation

Yu. A. Neretin

Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
Full-text PDF (358 kB) Citations (8)
Abstract: The matrix of a permutation is a partial case of Markov transition matrices. In the same way, a measure preserving bijection of a space (A,α) with finite measure is a partial case of Markov transition operators. A Markov transition operator also can be considered as a map (polymorphism) (A,α)(A,α), which spreads points of (A,α) into measures on (A,α).
Denote by R the multiplicative group of positive real numbers and by M the semigroup of measures on R. In this paper, we discuss R-polymorphisms and -polymorphisms, who are analogues of the Markov transition operators (or polymorphisms) for the groups of bijections (A,α)(A,α) leaving the measure α quasiinvariant; two types of the polymorphisms correspond to the cases, when A has finite and infinite measure respectively. For the case, when the space A itself is finite, the R-polymorphisms are some M-valued matrices.
We construct a functor from -polymorphisms to R-polymorphisms, it is described in terms of summations of M-convolution products over matchings of Poisson configurations.
Received: 30.10.2002
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 126, Issue 2, Pages 1077–1094
DOI: https://doi.org/10.1007/s10958-005-0089-z
Bibliographic databases:
UDC: 517.98
Language: English
Citation: Yu. A. Neretin, “Spreading maps (polymorphisms), symmetries of Poisson processes, and matching summation”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part VII, Zap. Nauchn. Sem. POMI, 292, POMI, St. Petersburg, 2002, 62–91; J. Math. Sci. (N. Y.), 126:2 (2005), 1077–1094
Citation in format AMSBIB
\Bibitem{Ner02}
\by Yu.~A.~Neretin
\paper Spreading maps (polymorphisms), symmetries of Poisson processes, and matching summation
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~VII
\serial Zap. Nauchn. Sem. POMI
\yr 2002
\vol 292
\pages 62--91
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1667}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1944085}
\zmath{https://zbmath.org/?q=an:1079.28008}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 126
\issue 2
\pages 1077--1094
\crossref{https://doi.org/10.1007/s10958-005-0089-z}
Linking options:
  • https://www.mathnet.ru/eng/znsl1667
  • https://www.mathnet.ru/eng/znsl/v292/p62
  • This publication is cited in the following 8 articles:
    1. Yu. A. Neretin, “Polyhomomorphisms of locally compact groups”, Sb. Math., 212:2 (2021), 185–210  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. Yu. A. Neretin, “Wishart–Pickrell distributions and closures of group actions”, J. Math. Sci. (N. Y.), 224:2 (2017), 328–334  mathnet  crossref  mathscinet
    3. Yu. A. Neretin, “Infinite symmetric groups and combinatorial constructions of topological field theory type”, Russian Math. Surveys, 70:4 (2015), 715–773  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. Yu. A. Neretin, “Bi-invariant functions on the group of transformations leaving a measure quasi-invariant”, Sb. Math., 205:9 (2014), 1357–1372  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. Yu. A. Neretin, “On the boundary of the group of transformations leaving a measure quasi-invariant”, Sb. Math., 204:8 (2013), 1161–1194  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    6. Yu. Neretin, “Infinite Tri-symmetric Group, Multiplication of Double Cosets, and Checker Topological Field Theories”, International Mathematics Research Notices, 2012:3 (2012), 501  crossref
    7. Yury Neretin, “Symmetries of Gaussian measures and operator colligations”, Journal of Functional Analysis, 263:3 (2012), 782  crossref
    8. Salvai M., “A dynamical approach to compactify the three dimensional Lorentz group”, J Lie Theory, 15:1 (2005), 335–339  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:281
    Full-text PDF :83
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025