Abstract:
Let AA be a Lebesgue measure space. We interpret measures on A×A×R× as ‘maps’ from A to A, which ‘spread’ A along itself; their Radon-Nikodym derivatives are also spread. We discuss the basic properties of the semigroup of such maps and the action of this semigroup on the spaces Lp(A).
Bibliography: 26 titles.
\Bibitem{Ner13}
\by Yu.~A.~Neretin
\paper On the boundary of the group of transformations leaving a~measure quasi-invariant
\jour Sb. Math.
\yr 2013
\vol 204
\issue 8
\pages 1161--1194
\mathnet{http://mi.mathnet.ru/eng/sm8086}
\crossref{https://doi.org/10.1070/SM2013v204n08ABEH004335}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3135689}
\zmath{https://zbmath.org/?q=an:06231592}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013SbMat.204.1161N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325549200005}
\elib{https://elibrary.ru/item.asp?id=20359269}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84888329107}
Linking options:
https://www.mathnet.ru/eng/sm8086
https://doi.org/10.1070/SM2013v204n08ABEH004335
https://www.mathnet.ru/eng/sm/v204/i8/p83
This publication is cited in the following 1 articles:
Yu. A. Neretin, “Bi-invariant functions on the group of transformations leaving a measure quasi-invariant”, Sb. Math., 205:9 (2014), 1357–1372