Abstract:
In the note limit theorems on large deviations of sum X1+⋯+Xn of i.i.d. random variables under the assumption EX21e\laX1<∞ for some λ>0 are studied.
Citation:
L. V. Rozovskii, “Large deviation probabilities for some classes of distributions, satisfying the Cramer condition”, Probability and statistics. Part 6, Zap. Nauchn. Sem. POMI, 298, POMI, St. Petersburg, 2003, 161–185; J. Math. Sci. (N. Y.), 128:1 (2005), 2585–2600
\Bibitem{Roz03}
\by L.~V.~Rozovskii
\paper Large deviation probabilities for some classes of distributions, satisfying the Cramer condition
\inbook Probability and statistics. Part~6
\serial Zap. Nauchn. Sem. POMI
\yr 2003
\vol 298
\pages 161--185
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1170}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2038871}
\zmath{https://zbmath.org/?q=an:1074.60035}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 128
\issue 1
\pages 2585--2600
\crossref{https://doi.org/10.1007/s10958-005-0207-y}
Linking options:
https://www.mathnet.ru/eng/znsl1170
https://www.mathnet.ru/eng/znsl/v298/p161
This publication is cited in the following 8 articles:
Frolov A., Universal Theory For Strong Limit Theorems of Probability, World Scientific Publ Co Pte Ltd, 2020, 1–189
Frolov A., “Preface”: Frolov, AN, Universal Theory For Strong Limit Theorems of Probability, World Scientific Publ Co Pte Ltd, 2020, VII+
XieQuan Fan, Ion Grama, QuanSheng Liu, “Sharp large deviation results for sums of independent random variables”, Sci. China Math., 58:9 (2015), 1939
L. V. Rozovskii, “Superlarge deviation probabilities for sums of independent random variables with exponential decreasing distributions. II”, Theory Probab. Appl., 59:1 (2015), 168–177
A. N. Chuprunov, I. Fazekas, “An analogue of the generalised allocation scheme: limit theorems for the number of cells containing a given number of particles”, Discrete Math. Appl., 22:1 (2012), 101–122
Leonid Rozovsky, “Superlarge deviation probabilities for sums of independent lattice random variables with exponential decreasing tails”, Statistics & Probability Letters, 82:1 (2012), 72
L. V. Rozovskii, “Superlarge deviation probabilities for sums of independent random variables with exponential decreasing distribution”, Theory Probab. Appl., 52:1 (2008), 167–171
L. V. Rozovskii, “On small deviation probabilities of positive random variables”, J. Math. Sci. (N. Y.), 137:1 (2006), 4561–4566