Loading [MathJax]/jax/output/SVG/config.js
Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2014, Volume 7, Issue 3, Pages 107–115
DOI: https://doi.org/10.14529/mmp140311
(Mi vyuru150)
 

This article is cited in 5 scientific papers (total in 5 papers)

Programming & Computer Software

Numerical Solution of Volterra Integral Equations of the First Kind with Piecewise Continuous Kernel

D. N. Sidorovabc, A. N. Tyndad, I. R. Muftahovc

a Irkutsk State University
b Energy Systems Institute, Siberian Branch of Russian Academy of Sciences, Irkutsk, Russian Federation
c Irkutsk State Technical University, Irkutsk, Russian Federation
d Penza State University, Penza, Russian Federation
Full-text PDF (323 kB) Citations (5)
References:
Abstract: Integral equations are in the core of many mathematical models in physics, economics and ecology. Volterra integral equations of the first kind with jump discontinuous kernels play important role in such models and they are considered in this article. Regularization method and sufficient conditions are derived for existence and uniqueness of the solution of such integral equations. An efficient numerical method based on the mid-rectangular quadrature rule is proposed for these equations with jump discontinuous kernels. The accuracy of proposed numerical method is $\mathcal{O}(N^{-1})$. The model examples demonstrate efficiency of proposed method: errors, two mesh differences and orders of convergent.
Keywords: Volterra integral equations of the 1st kind; evolving systems; Glushkov integral model; numerical method.
Received: 20.05.2014
Document Type: Article
UDC: 517.968
MSC: 45D05
Language: Russian
Citation: D. N. Sidorov, A. N. Tynda, I. R. Muftahov, “Numerical Solution of Volterra Integral Equations of the First Kind with Piecewise Continuous Kernel”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:3 (2014), 107–115
Citation in format AMSBIB
\Bibitem{SidTynMuf14}
\by D.~N.~Sidorov, A.~N.~Tynda, I.~R.~Muftahov
\paper Numerical Solution of Volterra Integral Equations of the First Kind with Piecewise Continuous Kernel
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2014
\vol 7
\issue 3
\pages 107--115
\mathnet{http://mi.mathnet.ru/vyuru150}
\crossref{https://doi.org/10.14529/mmp140311}
Linking options:
  • https://www.mathnet.ru/eng/vyuru150
  • https://www.mathnet.ru/eng/vyuru/v7/i3/p107
  • This publication is cited in the following 5 articles:
    1. S. Noeiaghdam, D. N. Sidorov, I. R. Muftahov, A. V. Zhukov, “Control of accuracy on Taylor-collocation method for load leveling problem”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 30 (2019), 59–72  mathnet  crossref
    2. A. N. Tynda, D. N. Sidorov, I. R. Muftakhov, “Chislennyi metod resheniya sistem nelineinykh integralnykh uravnenii Volterra I roda s razryvnymi yadrami”, Zhurnal SVMO, 20:1 (2018), 55–63  mathnet  crossref  elib
    3. I. R. Muftahov, D. N. Sidorov, “Solvability and numerical solutions of systems of nonlinear Volterra integral equations of the first kind with piecewise continuous kernels”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 9:1 (2016), 130–136  mathnet  crossref  elib
    4. I. R. Muftakhov, D. N. Sidorov, N. A. Sidorov, “O regulyarizatsii po Lavrentevu integralnykh uravnenii pervogo roda v prostranstve nepreryvnykh funktsii”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 15 (2016), 62–77  mathnet
    5. N. A. Sidorov, D. N. Sidorov, I. R. Muftakhov, “O roli metoda vozmuschenii i teoremy Banakha–Shteingauza v voprosakh regulyarizatsii uravnenii pervogo roda”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 14 (2015), 82–99  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:574
    Full-text PDF :428
    References:65
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025