Abstract:
Integral equations are in the core of many mathematical models in physics, economics and ecology. Volterra integral equations of the first kind with jump discontinuous kernels play important role in such models and they are considered in this article. Regularization method and sufficient conditions are derived for existence and uniqueness of the solution of such integral equations. An efficient numerical method based on the mid-rectangular quadrature rule is proposed for these equations with jump discontinuous kernels. The accuracy of proposed numerical method is $\mathcal{O}(N^{-1})$. The model examples demonstrate efficiency of proposed method: errors, two mesh differences and orders of convergent.
Keywords:
Volterra integral equations of the 1st kind; evolving systems; Glushkov integral model; numerical method.
Citation:
D. N. Sidorov, A. N. Tynda, I. R. Muftahov, “Numerical Solution of Volterra Integral Equations of the First Kind with Piecewise Continuous Kernel”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:3 (2014), 107–115
\Bibitem{SidTynMuf14}
\by D.~N.~Sidorov, A.~N.~Tynda, I.~R.~Muftahov
\paper Numerical Solution of Volterra Integral Equations of the First Kind with Piecewise Continuous Kernel
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2014
\vol 7
\issue 3
\pages 107--115
\mathnet{http://mi.mathnet.ru/vyuru150}
\crossref{https://doi.org/10.14529/mmp140311}
Linking options:
https://www.mathnet.ru/eng/vyuru150
https://www.mathnet.ru/eng/vyuru/v7/i3/p107
This publication is cited in the following 5 articles:
S. Noeiaghdam, D. N. Sidorov, I. R. Muftahov, A. V. Zhukov, “Control of accuracy on Taylor-collocation method for load leveling problem”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 30 (2019), 59–72
A. N. Tynda, D. N. Sidorov, I. R. Muftakhov, “Chislennyi metod resheniya sistem nelineinykh integralnykh uravnenii Volterra I roda s razryvnymi yadrami”, Zhurnal SVMO, 20:1 (2018), 55–63
I. R. Muftahov, D. N. Sidorov, “Solvability and numerical solutions of systems of nonlinear Volterra integral equations of the first kind with piecewise continuous kernels”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 9:1 (2016), 130–136
I. R. Muftakhov, D. N. Sidorov, N. A. Sidorov, “O regulyarizatsii po Lavrentevu integralnykh uravnenii pervogo roda v prostranstve nepreryvnykh funktsii”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 15 (2016), 62–77
N. A. Sidorov, D. N. Sidorov, I. R. Muftakhov, “O roli metoda vozmuschenii i teoremy Banakha–Shteingauza v voprosakh regulyarizatsii uravnenii pervogo roda”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 14 (2015), 82–99