Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2016, Volume 9, Issue 1, Pages 130–136
DOI: https://doi.org/10.14529/mmp160111
(Mi vyuru308)
 

This article is cited in 7 scientific papers (total in 7 papers)

Short Notes

Solvability and numerical solutions of systems of nonlinear Volterra integral equations of the first kind with piecewise continuous kernels

I. R. Muftahova, D. N. Sidorovabc

a Irkutsk National Research Technical University, Irkutsk, Russian Federation
b Irkutsk State University, Irkutsk, Russian Federation
c Melentiev Energy Systems Institute, Siberian Branch of Russian Academy of Sciences, Irkutsk, Russian Federation
Full-text PDF (486 kB) Citations (7)
References:
Abstract: The existence theorem for systems of nonlinear Volterra integral equations kernels of the first kind with piecewise continuous is proved. Such equations model evolving dynamical systems. A numerical method for solving nonlinear Volterra integral equations of the first kind with piecewise continuous kernels is proposed using midpoint quadrature rule. Also numerical method for solution of systems of linear Volterra equations of the first kind is described. The examples demonstrate efficiency of proposed algorithms. The accuracy of proposed numerical methods is O(N1)O(N1).
Keywords: Volterra integral equations; discontinuous kernel; ill-posed problem; evolving dynamical systems; quadrature; Dekker–Brent method.
Funding agency
The authors are thankfull to Dr. A.N. Tynda for valuable comments and discussions of the results presented in this article. The second author is partly supported by the International science and technology cooperation program of China and Russia under Grant No. 2015DFA70580.
Received: 27.11.2015
Bibliographic databases:
Document Type: Article
UDC: 517.968
MSC: 45D05
Language: English
Citation: I. R. Muftahov, D. N. Sidorov, “Solvability and numerical solutions of systems of nonlinear Volterra integral equations of the first kind with piecewise continuous kernels”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:1 (2016), 130–136
Citation in format AMSBIB
\Bibitem{MufSid16}
\by I.~R.~Muftahov, D.~N.~Sidorov
\paper Solvability and numerical solutions of systems of nonlinear Volterra integral equations of the first kind with piecewise continuous kernels
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2016
\vol 9
\issue 1
\pages 130--136
\mathnet{http://mi.mathnet.ru/vyuru308}
\crossref{https://doi.org/10.14529/mmp160111}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000371348500011}
\elib{https://elibrary.ru/item.asp?id=25717243}
Linking options:
  • https://www.mathnet.ru/eng/vyuru308
  • https://www.mathnet.ru/eng/vyuru/v9/i1/p130
  • This publication is cited in the following 7 articles:
    1. Samad Noeiaghdam, Denis Sidorov, Fang Liu, 2024 43rd Chinese Control Conference (CCC), 2024, 2669  crossref
    2. S. Noeiaghdam, D. N. Sidorov, A. I. Dreglea, “Fuzzy Volterra integral equations with piecewise continuous kernels: theory and numerical solution”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 50 (2024), 36–50  mathnet  crossref
    3. Ildar Muftahov, Denis Sidorov, Aleksei Zhukov, Dmitriy Karamov, Advances in Intelligent Systems and Computing, 1301, Progress in Intelligent Decision Science, 2021, 808  crossref
    4. Samad Noeiaghdam, Denis Sidorov, Abdul-Majid Wazwaz, Nikolai Sidorov, Valery Sizikov, “The Numerical Validation of the Adomian Decomposition Method for Solving Volterra Integral Equation with Discontinuous Kernels Using the CESTAC Method”, Mathematics, 9:3 (2021), 260  crossref
    5. Denis Sidorov, Daniil Panasetsky, Nikita Tomin, Dmitriy Karamov, Aleksei Zhukov, Ildar Muftahov, Aliona Dreglea, Fang Liu, Yong Li, “Toward Zero-Emission Hybrid AC/DC Power Systems with Renewable Energy Sources and Storages: A Case Study from Lake Baikal Region”, Energies, 13:5 (2020), 1226  crossref
    6. S. Noeiaghdam, D. N. Sidorov, I. R. Muftahov, A. V. Zhukov, “Control of accuracy on Taylor-collocation method for load leveling problem”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 30 (2019), 59–72  mathnet  crossref
    7. A. N. Tynda, D. N. Sidorov, I. R. Muftakhov, “Chislennyi metod resheniya sistem nelineinykh integralnykh uravnenii Volterra I roda s razryvnymi yadrami”, Zhurnal SVMO, 20:1 (2018), 55–63  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:300
    Full-text PDF :110
    References:89
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025