Loading [MathJax]/jax/output/SVG/config.js
Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2017, Volume 27, Issue 3, Pages 365–388
DOI: https://doi.org/10.20537/vm170307
(Mi vuu595)
 

This article is cited in 18 scientific papers (total in 18 papers)

MATHEMATICS

Ultrafilters and maximal linked systems

A. G. Chentsovab

a N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620002, Russia
b Institute of Radioelectronics and Information Technologies, Ural Federal University, ul. Mira, 32, Yekaterinburg, 620002, Russia
References:
Abstract: The family of maximal linked systems all elements of which are sets of an arbitrary lattice with “zero” and “unit” is considered; its subfamily composed of ultrafilters of that lattice is also considered. Relations between natural topologies used to equip the set of maximal linked systems and the set of the lattice ultrafilters are investigated. It is demonstrated that the last set under natural (for ultrafilter spaces) equipment is a subspace of the space of maximal linked systems under equipment with two comparable topologies one of which is similar to the topology used for the Wallman extension and the second corresponds (conceptually) to the scheme of Stone space in the case when the initial lattice is an algebra of sets. Properties of the resulting bitopological structure are detailed for the cases when our lattice is an algebra of sets, a topology, and a family of closed sets in a topological space.
Keywords: lattice of sets, topology, ultrafilter.
Received: 05.07.2017
Bibliographic databases:
Document Type: Article
UDC: 519.6
MSC: 28A33
Language: Russian
Citation: A. G. Chentsov, “Ultrafilters and maximal linked systems”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:3 (2017), 365–388
Citation in format AMSBIB
\Bibitem{Che17}
\by A.~G.~Chentsov
\paper Ultrafilters and maximal linked systems
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2017
\vol 27
\issue 3
\pages 365--388
\mathnet{http://mi.mathnet.ru/vuu595}
\crossref{https://doi.org/10.20537/vm170307}
\elib{https://elibrary.ru/item.asp?id=30267248}
Linking options:
  • https://www.mathnet.ru/eng/vuu595
  • https://www.mathnet.ru/eng/vuu/v27/i3/p365
  • This publication is cited in the following 18 articles:
    1. A. G. Chentsov, “Stseplennost semeistv mnozhestv, superkompaktnost i nekotorye obobscheniya”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXXII», Voronezh, 3–9 maya 2021 g.  Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 208, VINITI RAN, M., 2022, 79–90  mathnet  crossref
    2. A. G. Chentsov, “Maksimalnye stseplennye sistemy na semeistvakh izmerimykh pryamougolnikov”, Vestnik rossiiskikh universitetov. Matematika, 26:133 (2021), 77–104  mathnet
    3. A. G. Chentsov, “Maksimalnye stseplennye sistemy na proizvedeniyakh shiroko ponimaemykh izmerimykh prostranstv”, Vestnik rossiiskikh universitetov. Matematika, 26:134 (2021), 182–215  mathnet  crossref
    4. Alexander G. Chentsov, “Products of ultrafilters and maximal linked systems on widely understood measurable spaces”, Ural Math. J., 7:2 (2021), 3–32  mathnet  crossref  mathscinet
    5. A. G. Chentsov, “Ultrafiltry i maksimalnye stseplennye sistemy”, Tr. IMM UrO RAN, 26, no. 1, 2020, 274–292  mathnet  crossref  elib
    6. A. G. Chentsov, “O nekotorykh analogakh stseplennosti i superkompaktnosti”, Izv. IMI UdGU, 55 (2020), 113–134  mathnet  crossref
    7. A. G. Chentsov, “Maksimalnye stseplennye sistemy i ultrafiltry: osnovnye predstavleniya i topologicheskie svoistva”, Vestnik rossiiskikh universitetov. Matematika, 25:129 (2020), 68–84  mathnet  crossref
    8. A. G. Chentsov, “Filtry i stseplennye semeistva mnozhestv”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 30:3 (2020), 444–467  mathnet  crossref
    9. A. G. Chentsov, “To question on some generalizations of properties of cohesion of families of sets and supercompactness of topological spaces”, Russian Math. (Iz. VUZ), 64:11 (2020), 58–72  mathnet  crossref  crossref  isi
    10. A. G. Chentsov, “Nekotorye topologicheskie svoistva prostranstva maksimalnykh stseplennykh sistem s topologiei volmenovskogo tipa”, Izv. IMI UdGU, 56 (2020), 122–137  mathnet  crossref
    11. A. G. Chentsov, “Ultrafiltry i maksimalnye stseplennye sistemy: osnovnye sootnosheniya”, Izv. IMI UdGU, 53 (2019), 138–157  mathnet  crossref  elib
    12. A. G. Chentsov, “O superkompaktnosti prostranstva ultrafiltrov s topologiei volmenovskogo tipa”, Izv. IMI UdGU, 54 (2019), 74–101  mathnet  crossref  elib
    13. A. G. Chentsov, “Superkompaktnye prostranstva ultrafiltrov i maksimalnykh stseplennykh sistem”, Tr. IMM UrO RAN, 25, no. 2, 2019, 240–257  mathnet  crossref  elib
    14. A. G. Chentsov, “Bitopological spaces of ultrafilters and maximal linked systems”, Proc. Steklov Inst. Math. (Suppl.), 305, suppl. 1 (2019), S24–S39  mathnet  crossref  crossref  mathscinet  isi  elib
    15. A. G. Chentsov, “Ultrafiltry i maksimalnye stseplennye sistemy: osnovnye svoistva i topologicheskie konstruktsii”, Izv. IMI UdGU, 52 (2018), 86–102  mathnet  crossref  elib
    16. A. G. Chentsov, “Maximal linked systems and ultrafilters in abstract attainability problem”, IFAC-PapersOnLine, 51:32 (2018), 239–244  crossref  isi  scopus
    17. A. G. Chentsov, “Maksimalnye stseplennye sistemy i ultrafiltry shiroko ponimaemykh izmerimykh prostranstv”, Vestnik Tambovskogo universiteta. Seriya: estestvennye i tekhnicheskie nauki, 23:124 (2018), 846–860  mathnet  crossref  elib
    18. Alexander G. Chentsov, “Some representations connected with ultrafilters and maximal linked systems”, Ural Math. J., 3:2 (2017), 100–121  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:524
    Full-text PDF :259
    References:72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025