Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 1, Pages 257–272
DOI: https://doi.org/10.21538/0134-4889-2018-24-1-257-272
(Mi timm1513)
 

This article is cited in 20 scientific papers (total in 20 papers)

Bitopological spaces of ultrafilters and maximal linked systems

A. G. Chentsovab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: Issues of the structure of spaces of ultrafilters and maximal linked systems are studied. We consider a widely understood measurable space (a π-system with zero and one) defined as follows: we fix a nonempty family of subsets of a given set closed under finite intersections and containing the set itself ("one") and the nonempty set ("zero"). Ultrafilters (maximal filters) and maximal linked systems are constructed on this space. Each of the obtained spaces is equipped with a pair of comparable topologies. The resulting bitopological spaces turn out to be consistent in the following sense: each space of ultrafilters is a subspace of the corresponding space of maximal linked systems. Moreover, the space of maximal linked systems with Wallman-type topology is supercompact and, in particular, compact. Possible variants of the π-systems are lattices, semialgebras and algebras of sets, topologies, and families of closed sets of topological spaces.
Keywords: maximal linked system, topological space, ultrafilter.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00410
Received: 11.01.2018
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2019, Volume 305, Issue 1, Pages S24–S39
DOI: https://doi.org/10.1134/S0081543819040059
Bibliographic databases:
Document Type: Article
UDC: 519.6
MSC: 54A09, 54A10, 54B05
Language: Russian
Citation: A. G. Chentsov, “Bitopological spaces of ultrafilters and maximal linked systems”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 1, 2018, 257–272; Proc. Steklov Inst. Math. (Suppl.), 305, suppl. 1 (2019), S24–S39
Citation in format AMSBIB
\Bibitem{Che18}
\by A.~G.~Chentsov
\paper Bitopological spaces of ultrafilters and maximal linked systems
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 1
\pages 257--272
\mathnet{http://mi.mathnet.ru/timm1513}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-1-257-272}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3782952}
\elib{https://elibrary.ru/item.asp?id=32604062}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2019
\vol 305
\issue , suppl. 1
\pages S24--S39
\crossref{https://doi.org/10.1134/S0081543819040059}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000436169800022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073537654}
Linking options:
  • https://www.mathnet.ru/eng/timm1513
  • https://www.mathnet.ru/eng/timm/v24/i1/p257
  • This publication is cited in the following 20 articles:
    1. A. G. Chentsov, “Nekotorye voprosy, svyazannye s realizatsiei mnozhestv prityazheniya s tochnostyu do napered zadannoi okrestnosti”, Vestnik rossiiskikh universitetov. Matematika, 29:147 (2024), 352–376  mathnet  crossref
    2. A. G. Chentsov, “O topologicheskikh svoistvakh mnozhestva prityazheniya v prostranstve ultrafiltrov”, Vestnik rossiiskikh universitetov. Matematika, 28:143 (2023), 335–356  mathnet  crossref
    3. A. G. Chentsov, “Stseplennost semeistv mnozhestv, superkompaktnost i nekotorye obobscheniya”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXXII», Voronezh, 3–9 maya 2021 g.  Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 208, VINITI RAN, M., 2022, 79–90  mathnet  crossref
    4. A. G. Chentsov, “Maksimalnye stseplennye sistemy na semeistvakh izmerimykh pryamougolnikov”, Vestnik rossiiskikh universitetov. Matematika, 26:133 (2021), 77–104  mathnet
    5. A. G. Chentsov, “Maksimalnye stseplennye sistemy na proizvedeniyakh shiroko ponimaemykh izmerimykh prostranstv”, Vestnik rossiiskikh universitetov. Matematika, 26:134 (2021), 182–215  mathnet  crossref
    6. Alexander G. Chentsov, “Products of ultrafilters and maximal linked systems on widely understood measurable spaces”, Ural Math. J., 7:2 (2021), 3–32  mathnet  crossref  mathscinet
    7. A. G. Chentsov, “Ultrafiltry i maksimalnye stseplennye sistemy”, Tr. IMM UrO RAN, 26, no. 1, 2020, 274–292  mathnet  crossref  elib
    8. A. G. Chentsov, “O nekotorykh analogakh stseplennosti i superkompaktnosti”, Izv. IMI UdGU, 55 (2020), 113–134  mathnet  crossref
    9. A. G. Chentsov, “Maksimalnye stseplennye sistemy i ultrafiltry: osnovnye predstavleniya i topologicheskie svoistva”, Vestnik rossiiskikh universitetov. Matematika, 25:129 (2020), 68–84  mathnet  crossref
    10. A. G. Chentsov, “Filtry i stseplennye semeistva mnozhestv”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 30:3 (2020), 444–467  mathnet  crossref
    11. A. G. Chentsov, “To question on some generalizations of properties of cohesion of families of sets and supercompactness of topological spaces”, Russian Math. (Iz. VUZ), 64:11 (2020), 58–72  mathnet  crossref  crossref  isi
    12. A. G. Chentsov, “Nekotorye topologicheskie svoistva prostranstva maksimalnykh stseplennykh sistem s topologiei volmenovskogo tipa”, Izv. IMI UdGU, 56 (2020), 122–137  mathnet  crossref
    13. A. G. Chentsov, “Superkompaktnye prostranstva ultrafiltrov i maksimalnykh stseplennykh sistem”, Tr. IMM UrO RAN, 25, no. 2, 2019, 240–257  mathnet  crossref  elib
    14. Alexander G. Chentsov, “To a question on the supercompactness of ultrafilter spaces”, Ural Math. J., 5:1 (2019), 31–47  mathnet  crossref  mathscinet  zmath
    15. A. G. Chentsov, “Ultrafiltry i maksimalnye stseplennye sistemy: osnovnye sootnosheniya”, Izv. IMI UdGU, 53 (2019), 138–157  mathnet  crossref  elib
    16. A. G. Chentsov, “O superkompaktnosti prostranstva ultrafiltrov s topologiei volmenovskogo tipa”, Izv. IMI UdGU, 54 (2019), 74–101  mathnet  crossref  elib
    17. A. G. Chentsov, “Some properties of ultrafilters of widely understood measurable spaces”, Dokl. Math., 99:3 (2019), 255–259  crossref  zmath  isi  scopus
    18. A. G. Chentsov, “Ultrafiltry i maksimalnye stseplennye sistemy: osnovnye svoistva i topologicheskie konstruktsii”, Izv. IMI UdGU, 52 (2018), 86–102  mathnet  crossref  elib
    19. Chentsov A.G., “Maximal Linked Systems and Ultrafilters in Abstract Attainability Problem”, IFAC PAPERSONLINE, 51:32 (2018), 239–244  crossref  isi  scopus
    20. A. G. Chentsov, “Maksimalnye stseplennye sistemy i ultrafiltry shiroko ponimaemykh izmerimykh prostranstv”, Vestnik Tambovskogo universiteta. Seriya: estestvennye i tekhnicheskie nauki, 23:124 (2018), 846–860  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:395
    Full-text PDF :79
    References:74
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025