Loading [MathJax]/jax/output/SVG/config.js
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2020, Volume 24, Number 2, Pages 275–318
DOI: https://doi.org/10.14498/vsgtu1765
(Mi vsgtu1765)
 

This article is cited in 13 scientific papers (total in 13 papers)

Mechanics of Solids

Creep and long-term strength of metals under unsteady complex stress states (Review)

A. M. Lokoshchenkoa, L. V. Fominab, W. V. Teraudab, Yu. G. Basalova, V. S. Agababyana

a Lomonosov Moscow State University, Institute of Mechanics, Moscow, 119192, Russian Federation
b Samara State Technical University, Samara, 443100, Russian Federation (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: This article is an analytical review of experimental and theoretical studies of creep and creep rupture strength of metals under unsteady complex stress states published over the past 60 years.
The first systematic studies of the creep of metals under complex stress conditions were published in the late 50s and early 60s of the 20th century in the Soviet Union (L. M. Kachanov and Yu. N. Rabotnov) and Great Britain (A. E. Johnson). Pioneering work on creep rupture strength first appeared in the USSR (L. M. Kachanov and Yu. N. Rabotnov). Subsequently, Yu. N. Rabotnov developed the kinetic theory of creep and creep rupture strength, with the help of which it is possible to efficiently describe various features of the creep process of metals up to fracture under various loading programs. Different versions of the kinetic theory use either a scalar damage parameter, or a vector parameter, or a tensor parameter, or a combination of them. Following the work of M. Kachanov and Yu. N. Rabotnov mechanics of continuum destruction began to develop in Europe, in Asia, and then in the USA.
The hypothesis of proportionality of stress deviators and deviators of creep strain rates is accepted as the main connection between the components of stress tensors and creep strains. When modeling experimental data, the proportionality coefficient in this dependence takes different forms. The main problem in the development of this direction is the difficulty in obtaining experimental data with arbitrary loading programs.
This review provides the main results of studies conducted by scientists from different countries. Except Yu. N. Rabotnov and L. M. Kachanov, also a significant contribution to the development of the direction of science made by Russian scientists N. N. Malinin, A. A. Ilyushin, V. S. Namestnikov, S. A. Shesterikov, A. M. Lokoshchenko, Yu. P. Samarin, O. V. Sosnin, A. F. Nikitenko, et al.
Keywords: analytical review, creep, creep rupture strength, complex stress state, unsteady loading, stress relaxation, scalar damage parameter, vector damage parameter, tensor damage parameter.
Funding agency Grant number
Russian Science Foundation 19-19-00062
This study was supported by the Russian Science Foundation (RSF 19–19–00062, Samara State Technical University).
Received: January 7, 2020
Revised: February 24, 2020
Accepted: March 16, 2020
First online: May 14, 2020
Bibliographic databases:
Document Type: Article
UDC: 539.376
MSC: 74A05, 74D10
Language: Russian
Citation: A. M. Lokoshchenko, L. V. Fomin, W. V. Teraud, Yu. G. Basalov, V. S. Agababyan, “Creep and long-term strength of metals under unsteady complex stress states (Review)”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:2 (2020), 275–318
Citation in format AMSBIB
\Bibitem{LokFomTer20}
\by A.~M.~Lokoshchenko, L.~V.~Fomin, W.~V.~Teraud, Yu.~G.~Basalov, V.~S.~Agababyan
\paper Creep and long-term strength of metals under unsteady complex stress states (Review)
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2020
\vol 24
\issue 2
\pages 275--318
\mathnet{http://mi.mathnet.ru/vsgtu1765}
\crossref{https://doi.org/10.14498/vsgtu1765}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1765
  • https://www.mathnet.ru/eng/vsgtu/v224/i2/p275
  • This publication is cited in the following 13 articles:
    1. Regina Saitova, Alexander Arutyunyan, Holm Altenbach, “High temperature creep and embrittlement in metals and alloys under conditions of the long-term usage”, Acta Mech, 2024  crossref
    2. R. R. Saitova, F. M. Borodich, A. R. Arutyunyan, “Development of the Damage Concept in Mechanics of Materials”, Prikladnaâ matematika i mehanika, 88:2 (2024), 271  crossref
    3. G. M. Sevastyanov, A. S. Begun, A. A. Burenin, “Finite-Strain Elastic-Plastic Circular Shear in Materials with Isotropic Hardening”, Prikladnaâ matematika i mehanika, 88:2 (2024), 313  crossref
    4. V. P. Radchenko, E. A. Afanaseva, M. N. Saushkin, “Prognozirovanie vysokotemperaturnoi reologicheskoi deformatsii i dlitelnoi prochnosti vyazkoplasticheskogo materiala po obraztsu-lideru”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 27:2 (2023), 292–308  mathnet  crossref
    5. D. V. Chaplii, L. V. Stepanova, O. N. Belova, “Parametricheskoe issledovanie polei, assotsiirovannykh s vershinoi treschiny, v usloviyakh polzuchesti s uchetom protsessov nakopleniya povrezhdennosti s ispolzovaniem UMAT”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 27:3 (2023), 509–529  mathnet  crossref
    6. V. P. Radchenko, E. A. Afanaseva, M. N. Saushkin, “Prediction of creep and long-term strength of material using a leader sample under ductile fracture conditions”, J. Appl. Mech. Tech. Phys., 64:6 (2024), 1119–1127  mathnet  crossref  crossref  elib
    7. D. V. Chapliy, L. V. Stepanova, O. N. Belova, “Effect of damage accumulation on the asymptotic behavior of stresses ahead the crack tip”, Vestnik SamU. Estestvenno-Nauchnaya Ser., 29:1 (2023), 47–63  mathnet  mathnet  crossref
    8. A. A. Burenin, L. V. Kovtanyuk, G. L. Panchenko, “Changes in Residual Stresses in the Vicinity of a Continuity Defect in an Elastoviscoplastic Material under Repeated Loading”, Mech. Solids, 58:6 (2023), 2024  crossref
    9. A. A. Burenin, L. V. Kovtanyuk, G. L. Panchenko, “OB IZMENENIYaKh V OSTATOChNYKh NAPRYaZhENIYaKh V OKRESTNOSTI DEFEKTA SPLOShNOSTI UPRUGOVYaZKOPLASTIChESKOGO MATERIALA PRI POVTORNOM NAGRUZhENII”, Izvestiya Rossiiskoi akademii nauk. Mekhanika tverdogo tela, 2023, no. 6, 113  crossref
    10. I. A. Volkov, L. A. Igumnov, D. N. Shishulin, E. V. Boev, “MODELING OF NON-STATIONARY CREEP PROCESSES UNDER MULTIPLE LOADING CONDITIONS BY TAKING INTO ACCOUNT DAMAGE ACCUMULATION IN A STRUCTURAL MATERIAL”, Mech. Solids, 57:2 (2022), 223  crossref
    11. E. B. Zavoychinskaya, “General principles and criteria of failure of solids on different scale-structural levels under static and alternating loading”, Zavod. lab., Diagn. mater., 88:7 (2022), 48  crossref
    12. V. M. Mikhalevich, I. V. Abramchuk, “Maximum Accumulated Strain for Linear Two-Link Triangle-Like Deformation Trajectories”, Int Appl Mech, 57:6 (2021), 720  crossref
    13. Sergiy Kulman, Liudmyla Boiko, Ján Sedliačik, “Long-Term Strength Prediction of Wood Based Composites Using the Kinetic Equations”, Scientific Horizons, 24:3 (2021), 9  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:598
    Full-text PDF :444
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025