Loading [MathJax]/jax/output/CommonHTML/jax.js
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2020, Volume 24, Number 2, Pages 249–274
DOI: https://doi.org/10.14498/vsgtu1759
(Mi vsgtu1759)
 

This article is cited in 2 scientific papers (total in 2 papers)

Differential Equations and Mathematical Physics

Sobolev spaces and boundary-value problems for the curl and gradient-of-divergence operators

R. S. Saks

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa, 450077, Russian Federation (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: We study boundary value and spectral problems in a bounded domain G with smooth border for operators rot+λI and div+λI in the Sobolev spaces.
For λ0 these operators are reducible (by B. Veinberg and V. Grushin method) to elliptical matrices and the boundary value problems and satisfy the conditions of V. Solonnikov's ellipticity. Useful properties of solutions of these spectral problems derive from the theory and estimates. The div and rot operators have self-adjoint extensions Nd and S in orthogonal subspaces Aγ and V0 forming from potential and vortex fields in L2(G). Their eigenvectors form orthogonal basis in Aγ and V0 elements which are presented by Fourier series and operators are transformations of series.
We define analogues of Sobolev spaces A2kγ and Wm orders of 2k and m in classes of potential and vortex fields and classes C(2k,m) of their direct sums. It is proved that if λSp(rot), then the operator rot+λI displays the class C(2k,m+1) on the class C(2k,m) one-to-one and continuously. And if λSp(div), then operator div+λI maps the class C(2(k+1),m) on the class C(2k,m), respectively.
Keywords: Sobolev spaces, gradient operator, divergence operator, curl operator, elliptic boundary value problems, spectral problems.
Received: November 25, 2019
Revised: March 10, 2020
Accepted: March 16, 2020
First online: June 22, 2020
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: R. S. Saks, “Sobolev spaces and boundary-value problems for the curl and gradient-of-divergence operators”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:2 (2020), 249–274
Citation in format AMSBIB
\Bibitem{Sak20}
\by R.~S.~Saks
\paper Sobolev spaces and boundary-value problems for the curl and gradient-of-divergence operators
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2020
\vol 24
\issue 2
\pages 249--274
\mathnet{http://mi.mathnet.ru/vsgtu1759}
\crossref{https://doi.org/10.14498/vsgtu1759}
\elib{https://elibrary.ru/item.asp?id=43673324}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1759
  • https://www.mathnet.ru/eng/vsgtu/v224/i2/p249
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:556
    Full-text PDF :511
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025