Loading [MathJax]/jax/output/SVG/config.js
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2022, Number 5, Pages 31–39 (Mi vmumm4493)  

This article is cited in 13 scientific papers (total in 13 papers)

Mechanics

Nonlinear model of shear flow of thixotropic viscoelastoplastic continua taking into account the evolution of the structure and its analysis

A. M. Stolina, A. V. Khokhlovbc

a Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia
b Lomonosov Moscow State University, Institute of Mechanics
c North-Eastern Federal University named after M. K. Ammosov, Yakutsk
References:
Abstract: We formulate a nonlinear Maxwell-type constitutive equation for shear deformation of polymers in flow state or polymer viscoelastic melts and solutions which takes into account interaction of deformation process and structure evolution, namely, influence of the kinetics formation and breakage of chain cross-links, agglomerations of molecules and crystallites on viscosity and shear modulus and deformation influence on the kinetics. The constitutive equation is governed by an increasing material function and six positive parameters. We reduce it to the set of two nonlinear autonomous differential equations for two unknown functions (namely, stress and relative cross-links density) and prove existence and uniqueness of its equilibrium point and prove that its coordinates depend monotonically on every material parameter and on shear rate. We derive general equations for model flow curve and viscosity curve and prove that the first one increase and the second one decrease while the shear rate grows. Thus the model describes basic phenomena observed for simple shear flow of shear thinning fluids.
Key words: thixotropy, viscoelasticity, rheological model, polymeric systems, equilibrium point, flow curve, viscosity anomaly.
Funding agency Grant number
Russian Science Foundation 22-13-20056
The study is supported by the Russian Science Foundation, project no. 22-13-20056.
Received: 16.03.2022
English version:
Moscow University Mechanics Bulletin, 2022, Volume 77, Issue 5, Pages 127–135
DOI: https://doi.org/10.3103/S0027133022050065
Bibliographic databases:
Document Type: Article
UDC: 539.3
Language: Russian
Citation: A. M. Stolin, A. V. Khokhlov, “Nonlinear model of shear flow of thixotropic viscoelastoplastic continua taking into account the evolution of the structure and its analysis”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022, no. 5, 31–39; Moscow University Mechanics Bulletin, 77:5 (2022), 127–135
Citation in format AMSBIB
\Bibitem{StoKho22}
\by A.~M.~Stolin, A.~V.~Khokhlov
\paper Nonlinear model of shear flow of thixotropic viscoelastoplastic continua taking into account the evolution of the structure and its analysis
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2022
\issue 5
\pages 31--39
\mathnet{http://mi.mathnet.ru/vmumm4493}
\elib{https://elibrary.ru/item.asp?id=49553377}
\transl
\jour Moscow University Mechanics Bulletin
\yr 2022
\vol 77
\issue 5
\pages 127--135
\crossref{https://doi.org/10.3103/S0027133022050065}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4493
  • https://www.mathnet.ru/eng/vmumm/y2022/i5/p31
  • This publication is cited in the following 13 articles:
    1. Guang-quan Niu, Xue-shi Ma, Liang Wang, Mechanisms and Machine Science, 175, Computational and Experimental Simulations in Engineering, 2025, 571  crossref
    2. A. V. Khokhlov, V. V. Gulin, “Influence of Structural Evolution and Load Level on the Properties of Creep and Recovery Curves Generated by a Nonlinear Model for Thixotropic Viscoelastoplastic Media”, Phys Mesomech, 28:1 (2025), 66  crossref
    3. A. V. Khokhlov, V. V. Gulin, “Families of Stress-Strain, Relaxation, and Creep Curves Generated by a Nonlinear Model for Thixotropic Viscoelastic-Plastic Media Accounting for Structure Evolution Part 1. The model, Its Basic Properties, Integral Curves, and Phase Portraits”, Mech Compos Mater, 60:1 (2024), 49  crossref
    4. A. V. Khokhlov, V. V. Gulin, “Families of Stress–Strain, Relaxation and Creep Curves Generated by a Nonlinear Model for Thixotropic Viscoelastic-Plastic Media Accounting for Structure Evolution Part 2. Relaxation and Stress-Strain Curves”, Mech Compos Mater, 60:2 (2024), 259  crossref
    5. Alexander N. Muranov, Viktor R. Lysenko, Maxim A. Kocharov, “Rheological Behavior Features of Feedstocks with a Two-Component Wax–Polyolefin Binder Compared to Analogs Based on Polyoxymethylene”, J. Compos. Sci., 8:6 (2024), 199  crossref
    6. A. V. Khokhlov, “Hybridization of a Linear Viscoelastic Constitutive Equation and a Nonlinear Maxwell-Type Viscoelastoplastic Model, and Analysis of Poisson's Ratio Evolution Scenarios under Creep”, Phys Mesomech, 27:3 (2024), 229  crossref
    7. A. V. Khokhlov, V. V. Gulin, “Families of Stress-Strain, Relaxation, and Creep Curves Generated by a Nonlinear Model for Thixotropic Viscoelastic-Plastic Media Accounting for Structure Evolution Part 3. Creep Curves”, Mech Compos Mater, 60:3 (2024), 473  crossref
    8. A. V. Khokhlov, “Creep curves generated by a nonlinear flow model of tixotropic viscoelastoplastic media taking into account structure evolution”, Moscow University Mеchanics Bulletin, 79:4 (2024), 119–129  mathnet  crossref  crossref  elib
    9. A.V. KHOKHLOV, V.V. GULIN, “INFLUENCE OF STRUCTURE EVOLUTION AND LOAD LEVEL ON THE PROPERTIES OF CREEP AND RECOVERY CURVES PRODUCED BY A NONLINEAR MODEL FOR THIXOTROPIC VISCOELASTOPLASTIC MEDIA”, FM, 27:5 (2024)  crossref
    10. A. V. Khokhlov, “Osobennosti povedeniya vyazkouprugoplasticheskikh materialov, modeli i sistema programm kvazistaticheskikh ispytanii polimerov i kompozitov dlya kompleksnogo izucheniya ikh svoistv i vybora i identifikatsii opredelyayuschikh sootnoshenii”, Vysokomolekulârnye soedineniâ. Seriâ C, 66:2 (2024), 157  crossref
    11. A. V. Khokhlov, “Equilibruim point and phase portrait of flow model for thixotropic media with consideration of the structure evolution”, Moscow University Mеchanics Bulletin, 78:4 (2023), 91–101  mathnet  crossref  crossref  elib
    12. A. V. Khokhlov, V. V. Gulin, “Analysis of the Properties of a Nonlinear Model for Shear Flow of Thixotropic Media Taking into Account the Mutual Influence of Structural Evolution and Deformation”, Phys Mesomech, 26:6 (2023), 621  crossref
    13. A. V. Khokhlov, “Generalization of a Nonlinear Maxwell-Type Viscoelastoplastic Model and Simulation of Creep and Recovery Curves”, Mech Compos Mater, 59:3 (2023), 441  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:103
    Full-text PDF :34
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025