Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2023, Number 4, Pages 30–39
DOI: https://doi.org/10.55959/MSU0579-9368-1-64-4-5
(Mi vmumm4551)
 

This article is cited in 7 scientific papers (total in 7 papers)

Mechanics

Equilibruim point and phase portrait of flow model for thixotropic media with consideration of the structure evolution

A. V. Khokhlovab

a Lomonosov Moscow State University, Institute of Mechanics
b North-Eastern Federal University named after M. K. Ammosov, Yakutsk
Full-text PDF (300 kB) Citations (7)
References:
Abstract: We continue the systematic analytical study of a nonlinear Maxwell-type constitutive equation for shear flow of thixotropic viscoelastic media accounting for interaction of deformation process and structure evolution, namely, the influence of the kinetics formation and breakage of chain cross-links, agglomerations of molecules and crystallites on viscosity and shear modulus and deformation influence on the kinetics. We formulated it in the previous article and reduced it to the set of two nonlinear autonomous differential equations for two unknown functions (namely, the stress and relative cross-links density). We examine the phase portrait of the system for arbitrary (increasing) material function and six (positive) material parameters governing the model and prove that the (unique) equilibrium point is stable and the only three cases are realized: the equilibrium point is a stable node or a degenerated stable node or a stable spiral point. We found criteria for every case in the form of explicit restrictions on the material function and parameters and shear rate.
Key words: thixotropy, viscoelasticity, rheological model, polymeric systems, equilibrium point, phase portrait, stable spiral point, flow curve, viscosity anomaly.
Funding agency Grant number
Russian Science Foundation 22-13-20056
Received: 24.06.2022
Revised: 28.03.2023
English version:
Moscow University Mеchanics Bulletin, 2023, Volume 78, Issue 4, Pages 91–101
DOI: https://doi.org/10.3103/S0027133023040039
Bibliographic databases:
Document Type: Article
UDC: 539.3
Language: Russian
Citation: A. V. Khokhlov, “Equilibruim point and phase portrait of flow model for thixotropic media with consideration of the structure evolution”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 4, 30–39; Moscow University Mеchanics Bulletin, 78:4 (2023), 91–101
Citation in format AMSBIB
\Bibitem{Kho23}
\by A.~V.~Khokhlov
\paper Equilibruim point and phase portrait of flow model for thixotropic media with consideration of the structure evolution
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2023
\issue 4
\pages 30--39
\mathnet{http://mi.mathnet.ru/vmumm4551}
\crossref{https://doi.org/10.55959/MSU0579-9368-1-64-4-5}
\elib{https://elibrary.ru/item.asp?id=54354437}
\transl
\jour Moscow University Mеchanics Bulletin
\yr 2023
\vol 78
\issue 4
\pages 91--101
\crossref{https://doi.org/10.3103/S0027133023040039}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4551
  • https://www.mathnet.ru/eng/vmumm/y2023/i4/p30
  • This publication is cited in the following 7 articles:
    1. A. V. Khokhlov, V. V. Gulin, “Influence of Structural Evolution and Load Level on the Properties of Creep and Recovery Curves Generated by a Nonlinear Model for Thixotropic Viscoelastoplastic Media”, Phys Mesomech, 28:1 (2025), 66  crossref
    2. A. V. Khokhlov, V. V. Gulin, “Families of Stress-Strain, Relaxation, and Creep Curves Generated by a Nonlinear Model for Thixotropic Viscoelastic-Plastic Media Accounting for Structure Evolution Part 1. The model, Its Basic Properties, Integral Curves, and Phase Portraits”, Mech Compos Mater, 60:1 (2024), 49  crossref
    3. A. V. Khokhlov, V. V. Gulin, “Families of Stress–Strain, Relaxation and Creep Curves Generated by a Nonlinear Model for Thixotropic Viscoelastic-Plastic Media Accounting for Structure Evolution Part 2. Relaxation and Stress-Strain Curves”, Mech Compos Mater, 60:2 (2024), 259  crossref
    4. A. V. Khokhlov, V. V. Gulin, “Families of Stress-Strain, Relaxation, and Creep Curves Generated by a Nonlinear Model for Thixotropic Viscoelastic-Plastic Media Accounting for Structure Evolution Part 3. Creep Curves”, Mech Compos Mater, 60:3 (2024), 473  crossref
    5. A. V. Khokhlov, “Creep curves generated by a nonlinear flow model of tixotropic viscoelastoplastic media taking into account structure evolution”, Moscow University Mеchanics Bulletin, 79:4 (2024), 119–129  mathnet  crossref  crossref  elib
    6. A.V. KHOKHLOV, V.V. GULIN, “INFLUENCE OF STRUCTURE EVOLUTION AND LOAD LEVEL ON THE PROPERTIES OF CREEP AND RECOVERY CURVES PRODUCED BY A NONLINEAR MODEL FOR THIXOTROPIC VISCOELASTOPLASTIC MEDIA”, FM, 27:5 (2024)  crossref
    7. A. V. Khokhlov, “Osobennosti povedeniya vyazkouprugoplasticheskikh materialov, modeli i sistema programm kvazistaticheskikh ispytanii polimerov i kompozitov dlya kompleksnogo izucheniya ikh svoistv i vybora i identifikatsii opredelyayuschikh sootnoshenii”, Vysokomolekulârnye soedineniâ. Seriâ C, 66:2 (2024), 157  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:159
    Full-text PDF :76
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025