Abstract:
The Fomenko–Zieshang invariant of an interesting case of an integrable billiard book is calculated and it is shown
that such a book models the dynamics of Goryachev–Chaplygin integrable case on a certain isoenergy surface.
Citation:
V. V. Vedyushkina, “The Liouville foliation of the billiard book modelling the Goryachev–Chaplygin case”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020, no. 1, 64–68; Moscow University Mathematics, 75:1 (2020), 42–46
\Bibitem{Ved20}
\by V.~V.~Vedyushkina
\paper The Liouville foliation of the billiard book modelling the Goryachev--Chaplygin case
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2020
\issue 1
\pages 64--68
\mathnet{http://mi.mathnet.ru/vmumm4305}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4127508}
\zmath{https://zbmath.org/?q=an:1448.37067}
\transl
\jour Moscow University Mathematics
\yr 2020
\vol 75
\issue 1
\pages 42--46
\crossref{https://doi.org/10.3103/S0027132220010076}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000548650100007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087925686}
Linking options:
https://www.mathnet.ru/eng/vmumm4305
https://www.mathnet.ru/eng/vmumm/y2020/i1/p64
This publication is cited in the following 15 articles:
D. A. Tuniyants, “Topology of isoenergetic surfaces of billiard books glued of rings”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 3, 26–35
K. E. Turina, “Topological invariants of some ordered billiard games”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 3, 19–25
K. E. Turina, “Topological invariants of some ordered billiard games”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 79:3 (2024), 122–129
D. A. Tuniyants, “Topology of isoenergetic surfaces of billiard books glued of rings”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 79:3 (2024), 130–141
V. A. Kibkalo, D. A. Tuniyants, “Uporyadochennye billiardnye igry i topologicheskie svoistva billiardnykh knizhek”, Trudy Voronezhskoi zimnei matematicheskoi shkoly S. G. Kreina — 2024, SMFN, 70, no. 4, Rossiiskii universitet druzhby narodov, M., 2024, 610–625
V. N. Zav'yalov, “Billiard with slipping by an arbitrary rational angle”, Sb. Math., 214:9 (2023), 1191–1211
A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrable systems”, Russian Math. Surveys, 78:5 (2023), 881–954
G. V. Belozerov, “Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space”, Sb. Math., 213:2 (2022), 129–160
Vladimir Dragović, Sean Gasiorek, Milena Radnović, “Billiard Ordered Games and Books”, Regul. Chaotic Dyn., 27:2 (2022), 132–150
A. T. Fomenko, V. V. Vedyushkina, “Evolutionary force billiards”, Izv. Math., 86:5 (2022), 943–979
V. V. Vedyushkina, V. N. Zav'yalov, “Realization of geodesic flows with a linear first integral by billiards with slipping”, Sb. Math., 213:12 (2022), 1645–1664
V. A. Kibkalo, A. T. Fomenko, I. S. Kharcheva, “Realizing integrable Hamiltonian systems by means of billiard books”, Trans. Moscow Math. Soc., 82 (2021), 37–64
A. T. Fomenko, V. V. Vedyushkina, “Billiards with Changing Geometry and Their Connection with the Implementation of the Zhukovsky and Kovalevskaya Cases”, Russ. J. Math. Phys., 28:3 (2021), 317
A. T. Fomenko, V. V. Vedyushkina, V. N. Zav'yalov, “Liouville Foliations of Topological Billiards with Slipping”, Russ. J. Math. Phys., 28:1 (2021), 37
Anatoly T. Fomenko, Vladislav A. Kibkalo, Understanding Complex Systems, Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics, 2021, 3