Processing math: 100%
Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2018, Volume 10, Issue 2, Pages 3–13
DOI: https://doi.org/10.13108/2018-10-2-3
(Mi ufa422)
 

This article is cited in 14 scientific papers (total in 14 papers)

Regularized asymptotics of solutions to integro-differential partial differential equations with rapidly varying kernels

A. A. Bobodzhanov, V. F. Safonov

National Research University MPEI, Krasnokazarmennaya str. 14, 111250, Moscow, Russia
References:
Abstract: We generalize the Lomov's regularization method for partial differential equations with integral operators, whose kernel contains a rapidly varying exponential factor. We study the case when the upper limit of the integral operator coincides with the differentiation variable. For such problems we develop an algorithm for constructing regularized asymptotics. In contrast to the work by Imanaliev M.I., where for analogous problems with slowly varying kernel only the passage to the limit studied as the small parameter tended to zero, here we construct an asymptotic solution of any order (with respect to the parameter). We note that the Lomov's regularization method was used mainly for ordinary singularly perturbed integro-differential equations (see detailed bibliography at the end of the article). In one of the authors' papers the case of a partial differential equation with slowly varying kernel was considered. The development of this method for partial differential equations with rapidly changing kernel was not made before. The type of the upper limit of an integral operator in such equations generates two fundamentally different situations. The most difficult situation is when the upper limit of the integration operator does not coincide with the differentiation variable. As studies have shown, in this case, the integral operator can have characteristic values, and for the construction of the asymptotics, more strict conditions on the initial data of the problem are required. It is clear that these difficulties also arise in the study of an integro-differential system with a rapidly changing kernels, therefore in this paper the case of the dependence of the upper limit of an integral operator on the variable x is deliberately avoided. In addition, it is assumed that the same regularity is observed in a rapidly decreasing kernel exponent integral operator. Any deviations from these (seemingly insignificant) limitations greatly complicate the problem from the point of view of constructing its asymptotic solution. We expect that in our further works in this direction we will succeed to weak these restrictions.
Keywords: singularly perturbed, integro-differential equation, regularization of the integral.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation НШ-2081.2014.1
The work is partially financially supported by the Council on grants of the President of Russia (project no. NSh-2081.2014.1).
Received: 19.05.2017
Bibliographic databases:
Document Type: Article
UDC: 517.538
MSC: 35R09, 45K05
Language: English
Original paper language: Russian
Citation: A. A. Bobodzhanov, V. F. Safonov, “Regularized asymptotics of solutions to integro-differential partial differential equations with rapidly varying kernels”, Ufa Math. J., 10:2 (2018), 3–13
Citation in format AMSBIB
\Bibitem{BobSaf18}
\by A.~A.~Bobodzhanov, V.~F.~Safonov
\paper Regularized asymptotics of solutions to integro-differential partial differential equations with rapidly varying kernels
\jour Ufa Math. J.
\yr 2018
\vol 10
\issue 2
\pages 3--13
\mathnet{http://mi.mathnet.ru/eng/ufa422}
\crossref{https://doi.org/10.13108/2018-10-2-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000438890500001}
Linking options:
  • https://www.mathnet.ru/eng/ufa422
  • https://doi.org/10.13108/2018-10-2-3
  • https://www.mathnet.ru/eng/ufa/v10/i2/p3
  • This publication is cited in the following 14 articles:
    1. A. G. Eliseev, P. V. Kirichenko, “Postroeniya regulyarizovannoi asimptotiki resheniya singulyarno vozmuschennoi smeshannoi zadachi na poluosi dlya neodnorodnogo uravneniya tipa Shredingera s potentsialom V(x)=x”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody kraevykh zadach. Pontryaginskie chteniya—XXXIV», Voronezh, 3-9 maya 2023 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 231, VINITI RAN, M., 2024, 27–43  mathnet  crossref
    2. A. G. Eliseev, P. V. Kirichenko, “Regulyarizovannaya asimptotika resheniya singulyarno vozmuschennoi smeshannoi zadachi na poluosi dlya uravneniya tipa Shredingera pri nalichii silnoi tochki povorota u predelnogo operatora”, Chebyshevskii sb., 24:1 (2023), 50–68  mathnet  crossref
    3. A. G. Eliseev, T. A. Ratnikova, D. A. Shaposhnikova, “Regulyarizovannaya asimptotika resheniya singulyarno vozmuschennoi zadachi Koshi dlya uravneniya Shredingera s potentsialom Q(x)=x2”, Chebyshevskii sb., 24:5 (2023), 31–48  mathnet  crossref
    4. A. G. Eliseev, “The regularized asymptotics of a solution of the Cauchy problem in the presence of a weak turning point of the limit operator”, Sb. Math., 212:10 (2021), 1415–1435  mathnet  crossref  crossref  zmath  isi
    5. B. T. Kalimbetov, O. D. Tuychiev, “Asymptotic solution of the Cauchy problem for the singularly perturbed partial integro-differential equation with rapidly oscillating coefficients and with rapidly oscillating heterogeneity”, Open Math., 19 (2021), 244–258  crossref  mathscinet  zmath  isi  scopus
    6. T. K. Yuldashev, R. N. Odinaev, S. K. Zarifzoda, “On exact solutions of a class of singular partial integro-differential equations”, Lobachevskii J. Math., 42:3, SI (2021), 676–684  crossref  mathscinet  zmath  isi  scopus
    7. Burkhan Kalimbetov, Valery Safonov, “Singularly Perturbed Integro-Differential Equations With Rapidly Oscillating Coefficients and With Rapidly Changing Kernel in the Case of a Multiple Spectrum”, WSEAS TRANSACTIONS ON MATHEMATICS, 20 (2021), 84  crossref
    8. A. G. Eliseev, P. V. Kirichenko, “Reshenie singulyarno vozmuschennoi zadachi Koshi pri nalichii «slaboi» tochki povorota u predelnogo operatora”, Sib. elektron. matem. izv., 17 (2020), 51–60  mathnet  crossref
    9. A. Yeliseev, “On the Regularized Asymptotics of a Solution to the Cauchy Problem in the Presence of a Weak Turning Point of the Limit Operator”, Axioms, 9:3 (2020), 86  crossref  mathscinet  isi  scopus
    10. B. T. Kalimbetov, A. N. Temirbekov, A. S. Tolep, “Asymptotic solutions of scalar integro-differential equations with partial derivatives and with fast oscillating coefficients”, Eur. J. Pure Appl Math., 13:2 (2020), 287–302  crossref  mathscinet  isi  scopus
    11. B. T. Kalimbetov, Kh. F. Etmishev, “Asymptotic solutions of scalar integro-differential equations with partial derivatives and with rapidly oscillating coefficients”, Bull. Karaganda Univ-Math., 97:1 (2020), 52–67  crossref  isi
    12. B. T. Kalimbetov, N. A. Pardaeva, L. D. Sharipova, “Asymptotic solutions of integro-differential equations with partial derivatives and with rapidly varying kernel”, Sib. elektron. matem. izv., 16 (2019), 1623–1632  mathnet  crossref
    13. A. A. Bobodzhanov, B. T. Kalimbetov, V. F. Safonov, “Singularly perturbed control problems in the case of the stability of the spectrum of the matrix of an optimal system”, Bull. Karaganda Univ-Math., 96:4 (2019), 22–38  crossref  isi
    14. B. T. Kalimbetov, V. F. Safonov, “Integro-differentiated singularly perturbed equations with fast oscillating coefficients”, Bull. Karaganda Univ-Math., 94:2 (2019), 33–47  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:308
    Russian version PDF:111
    English version PDF:35
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025