Loading [MathJax]/jax/output/SVG/config.js
Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2016, Volume 8, Issue 1, Pages 108–120
DOI: https://doi.org/10.13108/2016-8-1-108
(Mi ufa318)
 

This article is cited in 3 scientific papers (total in 3 papers)

Minimal value for the type of an entire function of order $\rho\in(0,1)$, whose zeros lie in an angle and have a prescribed density

V. B. Sherstyukov

National Research Nuclear University MEPhI, Kashirskoe highway, 31 115409, Moscow, Russia
References:
Abstract: In the work we find the minimal value that can be taken by the type of an entire function of order $\rho\in(0,1)$ with zeroes of prescribed upper and lower densities and located in an angle of a fixed opening less than $\pi$. The main theorem generalizes the previous result by the author (the zeroes lie on one ray) and by A. Yu. Popov (only the upper density of zeros was taken into consideration). We distinguish and study in detail the case when the an entire function has a measurable sequence of zeroes. We provide applications of the obtained results to the uniqueness theorems for entire functions and to the completeness of exponential systems in the space of analytic in a circle functions with the standard topology of uniform convergence on compact sets.
Keywords: type of an entire function, upper and lower density of zeroes, uniqueness theorem, completeness of exponential system.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00281-а
The work is supported by RFBR (grant no. 13-01-00281-a).
Received: 06.07.2015
Bibliographic databases:
Document Type: Article
UDC: 517.547.22
MSC: 30D15
Language: English
Original paper language: Russian
Citation: V. B. Sherstyukov, “Minimal value for the type of an entire function of order $\rho\in(0,1)$, whose zeros lie in an angle and have a prescribed density”, Ufa Math. J., 8:1 (2016), 108–120
Citation in format AMSBIB
\Bibitem{She16}
\by V.~B.~Sherstyukov
\paper Minimal value for the type of an entire function of order $\rho\in(0,1)$, whose zeros lie in an angle and have a~prescribed density
\jour Ufa Math. J.
\yr 2016
\vol 8
\issue 1
\pages 108--120
\mathnet{http://mi.mathnet.ru/eng/ufa318}
\crossref{https://doi.org/10.13108/2016-8-1-108}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000411731100009}
\elib{https://elibrary.ru/item.asp?id=25631807}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84994339080}
Linking options:
  • https://www.mathnet.ru/eng/ufa318
  • https://doi.org/10.13108/2016-8-1-108
  • https://www.mathnet.ru/eng/ufa/v8/i1/p113
  • This publication is cited in the following 3 articles:
    1. G. G. Braichev, V. B. Sherstyukov, “Otsenki indikatorov tseloi funktsii s otritsatelnymi kornyami”, Vladikavk. matem. zhurn., 22:3 (2020), 30–46  mathnet  crossref
    2. V. B. Sherstyukov, “Asymptotic properties of entire functions with given laws of distribution of zeros”, J. Math. Sci. (N. Y.), 257:2 (2021), 246–272  mathnet  crossref  mathscinet
    3. G. G. Braichev, V. B. Sherstyukov, “Sharp bounds for asymptotic characteristics of growth of entire functions with zeros on given sets”, J. Math. Sci., 250:3 (2020), 419–453  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:470
    Full-text PDF :111
    References:77
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025