Loading [MathJax]/jax/output/SVG/config.js
Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2013, Volume 5, Issue 4, Pages 112–124
DOI: https://doi.org/10.13108/2013-5-4-112
(Mi ufa227)
 

This article is cited in 14 scientific papers (total in 14 papers)

On inverse nodal problem for Sturm-Liouville operator

A. Yu. Trynin

Saratov State University, Saratov, Russia
References:
Abstract: In this paper we propose a solution to a certain inverse Sturm-Liouville problem, which allows one to determine the potential and the boundary conditions of the differential operator on the values of one of the differentials of Gateaux zeroes $ x_ {k, n} [q ] \in (0, \pi) $ of some eigenfunction $ \hat y (x, q, \lambda_n [q]) $ for an increment $ w $ from the set $ \mathbb W $. As $ \mathbb W $, we consider some sets of classical and generalized functions.
Keywords: eigenfunction of Sturm-Liouville problem, nodal points of Sturm-Liouville problem, Gateaux differential, inverse Sturm-Liouville problem, inverse nodal problem, nodal points.
Received: 15.04.2013
Bibliographic databases:
Document Type: Article
UDC: 517.927
MSC: 34A55
Language: English
Original paper language: Russian
Citation: A. Yu. Trynin, “On inverse nodal problem for Sturm-Liouville operator”, Ufa Math. J., 5:4 (2013), 112–124
Citation in format AMSBIB
\Bibitem{Try13}
\by A.~Yu.~Trynin
\paper On inverse nodal problem for Sturm-Liouville operator
\jour Ufa Math. J.
\yr 2013
\vol 5
\issue 4
\pages 112--124
\mathnet{http://mi.mathnet.ru/eng/ufa227}
\crossref{https://doi.org/10.13108/2013-5-4-112}
\elib{https://elibrary.ru/item.asp?id=20930482}
Linking options:
  • https://www.mathnet.ru/eng/ufa227
  • https://doi.org/10.13108/2013-5-4-112
  • https://www.mathnet.ru/eng/ufa/v5/i4/p116
  • This publication is cited in the following 14 articles:
    1. A. Yu. Trynin, “Ob odnom metode resheniya smeshannoi kraevoi zadachi dlya uravneniya parabolicheskogo tipa s pomoschyu operatorov $\mathbb{AT}_{\lambda,j}$”, Izv. vuzov. Matem., 2024, no. 2, 59–80  mathnet  crossref
    2. V. N. Pasechnik, “Approximation of Continuous Functions by Classical Sincs and Values of Operators Cλ”, Comput. Math. and Math. Phys., 64:2 (2024), 206  crossref
    3. A. Yu. Trynin, “On One Method for Solving a Mixed Boundary Value Problem for a Parabolic Type Equation Using Operators $\mathbb{A}{{\mathbb{T}}_{{\lambda ,j}}}$”, Russ Math., 68:2 (2024), 52  crossref
    4. V. N. Pasechnik, “Priblizhenie nepreryvnykh funktsii s pomoschyu klassicheskikh sinkov i znachenii operatorov Cλ”, Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, 64:2 (2024), 220  crossref
    5. A. Yu. Trynin, “A method for solution of a mixed boundary value problem for a hyperbolic type equation using the operators $\mathbb{AT}_{\lambda,j}$”, Izv. Math., 87:6 (2023), 1227–1254  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    6. A. Yu. Trynin, “On a method for solving a mixed boundary value problem for a parabolic equation using modified sinc-approximation operators”, Comput. Math. Math. Phys., 63:7 (2023), 1264–1284  mathnet  mathnet  crossref  crossref
    7. A. Yu. Trynin, “Lagrange–Sturm–Liouville Processes”, J Math Sci, 261:3 (2022), 455  crossref
    8. A. Yu. Trynin, E. D. Kireeva, “Printsip lokalizatsii na klasse funktsii, integriruemykh po Rimanu, dlya protsessov Lagranzha–Shturma–Liuvillya”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 20:1 (2020), 51–63  mathnet  crossref
    9. A. Yu. Trynin, “Error Estimate for Uniform Approximation by Lagrange–Sturm–Liouville Processes”, J Math Sci, 247:6 (2020), 939  crossref
    10. A. Yu. Trynin, “A criterion of convergence of Lagrange–Sturm–Liouville processes in terms of one-sided modulus of variation”, Russian Math. (Iz. VUZ), 62:8 (2018), 51–63  mathnet  crossref  isi
    11. A. Yu. Trynin, “Uniform convergence of Lagrange–Sturm–Liouville processes on one functional class”, Ufa Math. J., 10:2 (2018), 93–108  mathnet  crossref  isi
    12. A. Yu. Trynin, “Skhodimost protsessov Lagranzha–Shturma–Liuvillya dlya nepreryvnykh funktsii ogranichennoi variatsii”, Vladikavk. matem. zhurn., 20:4 (2018), 76–91  mathnet  crossref  elib
    13. A. Yu. Trynin, “Sufficient condition for convergence of Lagrange–Sturm–Liouville processes in terms of one-sided modulus of continuity”, Comput. Math. Math. Phys., 58:11 (2018), 1716–1727  mathnet  crossref  crossref  isi  elib
    14. A. Yu. Trynin, “Neobkhodimye i dostatochnye usloviya ravnomernoi na otrezke sink-approksimatsii funktsii ogranichennoi variatsii”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 16:3 (2016), 288–298  mathnet  crossref  mathscinet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:539
    Russian version PDF:234
    English version PDF:30
    References:98
    First page:2
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025