Loading [MathJax]/jax/output/SVG/config.js
Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2016, Volume 8, Issue 1, Pages 97–107
DOI: https://doi.org/10.13108/2016-8-1-97
(Mi ufa320)
 

This article is cited in 10 scientific papers (total in 10 papers)

Asymptotic expansions of solutions to Dirichlet problem for elliptic equation with singularities

D. A. Tursunova, U. Z. Erkebaevb

a Ural State Pedagogical University, Karl Liebknecht str. 9, 620151, Ekaterinburg, Russia
b Osh State University, Lenin str. 331, 723500, Osh, Kyrgyzstan
References:
Abstract: The paper proposes an analogue of Vishik–Lyusternik–Vasileva–Imanalieva boundary functions method for constructing a uniform asymptotic expansion of solutions to bisingular perturbed problems. By means of this method we construct the uniform asymptotic expansion for the solution to the Dirichlet problem for bisingular perturbed second order elliptic equation with two independent variables in a circle. By the maximum principle we justify formal asymptotic expansion of the solution, that is, an estimate for the error term is established.
Keywords: asymptotic expansion, Dirichlet problem, Airy function, modified Bessel functions, boundary functions.
Funding agency Grant number
Ministry of Education and Science of Kyrgyz Republic
The work is supported by MES KR.
Received: 25.05.2015
Bibliographic databases:
Document Type: Article
UDC: 517.955.8
Language: English
Original paper language: Russian
Citation: D. A. Tursunov, U. Z. Erkebaev, “Asymptotic expansions of solutions to Dirichlet problem for elliptic equation with singularities”, Ufa Math. J., 8:1 (2016), 97–107
Citation in format AMSBIB
\Bibitem{TurErk16}
\by D.~A.~Tursunov, U.~Z.~Erkebaev
\paper Asymptotic expansions of solutions to Dirichlet problem for elliptic equation with singularities
\jour Ufa Math. J.
\yr 2016
\vol 8
\issue 1
\pages 97--107
\mathnet{http://mi.mathnet.ru/eng/ufa320}
\crossref{https://doi.org/10.13108/2016-8-1-97}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000411731100008}
\elib{https://elibrary.ru/item.asp?id=25631806}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84994257546}
Linking options:
  • https://www.mathnet.ru/eng/ufa320
  • https://doi.org/10.13108/2016-8-1-97
  • https://www.mathnet.ru/eng/ufa/v8/i1/p102
  • This publication is cited in the following 10 articles:
    1. D. A. Tursunov, M. O. Orozov, A. A. Halmatov, “Asymptotics of the solution to the boundary-value problems with non smooth coefficient”, Lobachevskii J. Math., 41:6, SI (2020), 1115–1122  crossref  mathscinet  zmath  isi  scopus
    2. D. A. Tursunov, M. O. Orozov, “Asymptotics of the solution to the roben problem for a ring with regularly singular boundary”, Lobachevskii J. Math., 41:1, SI (2020), 89–95  crossref  mathscinet  zmath  isi  scopus
    3. K. G. Kozhobekov, U. Z. Erkebaev, D. A. Tursunov, “Asymptotics of the solution to the boundary-value problems when limited equation has singular point”, Lobachevskii J. Math., 41:1, SI (2020), 96–101  crossref  mathscinet  zmath  isi  scopus
    4. D. A. Tursunov, M. O. Orozov, “Asimptoticheskoe reshenie vozmuschennoi pervoi kraevoi zadachi s negladkim koeffitsientom”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 12:3 (2020), 41–47  mathnet  crossref
    5. D. A. Tursunov, “Asymptotic solving linear bisingular problems with additional boundary layer”, Russian Math. (Iz. VUZ), 62:3 (2018), 60–67  mathnet  crossref  isi
    6. D. A. Tursunov, “Asimptotika resheniya zadachi Dirikhle s singulyarnostyu vnutri koltsa”, Matematicheskaya fizika i kompyuternoe modelirovanie, 21:1 (2018), 44–52  mathnet  crossref
    7. D. A. Tursunov, E. A. Tursunov, “Asimptotika resheniya bisingulyarnoi zadachi Koshi dlya sistem obyknovennykh differentsialnykh uravnenii”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2017, no. 1(38), 33–41  mathnet  crossref
    8. D. A. Tursunov, “Obobschennyi metod pogranfunktsii dlya bisingulyarnykh zadach v kruge”, Tr. IMM UrO RAN, 23, no. 2, 2017, 239–249  mathnet  crossref  elib
    9. D. A. Tursunov, “The Asymptotic Solution of the Three-Band Bisingularly Problem”, Lobachevskii J. Math., 38:3, SI (2017), 542–546  crossref  mathscinet  zmath  isi  scopus
    10. D. A. Tursunov, U. Z. Erkebaev, E. A. Tursunov, “Asimptotika resheniya zadachi Dirikhle dlya koltsa s kvadratichnymi rostami na granitsakh”, Izv. IMI UdGU, 2016, no. 2(48), 73–81  mathnet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:332
    Full-text PDF :83
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025