Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2015, Volume 7, Issue 3, Pages 54–66
DOI: https://doi.org/10.13108/2015-7-3-54
(Mi ufa290)
 

This article is cited in 5 scientific papers (total in 5 papers)

Distribution of zeroes to generalized Hermite polynomials

V. Yu. Novokshenova, A. A. Schelkonogovb

a Institution of Russian Academy of Sciences Institute of Mathematics with Computer Center, Ufa, Russia
b Ufa State Aviation Technical University, Ufa, Russia
References:
Abstract: Asymptotics of the orthogonal polynomial constitute a classic analytic problem. In the paper, we find a distribution of zeroes to generalized Hermite polynomials Hm,n(z) as m=n, n, z=O(n). These polynomials defined as the Wronskians of classic Hermite polynomials appear in a number of mathematical physics problems as well as in the theory of random matrices. Calculation of asymptotics is based on Riemann–Hilbert problem for Painlevé IV equation which has the solutions u(z)=2z+zlnHm,n+1(z)/Hm+1,n(z). In this scaling limit the Riemann-Hilbert problem is solved in elementary functions. As a result, we come to analogs of Plancherel–Rotach formulas for asymptotics of classical Hermite polynomials.
Keywords: generalized Hermite polynomials, Painlevé IV equation, meromorphic solutions, distribution of zeroes, Riemann–Hilbert problem, Deift–Zhou method, Plancherel–Rotach formulas.
Received: 24.08.2015
Bibliographic databases:
Document Type: Article
UDC: 517.587+517.923
Language: English
Original paper language: Russian
Citation: V. Yu. Novokshenov, A. A. Schelkonogov, “Distribution of zeroes to generalized Hermite polynomials”, Ufa Math. J., 7:3 (2015), 54–66
Citation in format AMSBIB
\Bibitem{NovShc15}
\by V.~Yu.~Novokshenov, A.~A.~Schelkonogov
\paper Distribution of zeroes to generalized Hermite polynomials
\jour Ufa Math. J.
\yr 2015
\vol 7
\issue 3
\pages 54--66
\mathnet{http://mi.mathnet.ru/eng/ufa290}
\crossref{https://doi.org/10.13108/2015-7-3-54}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416602400007}
\elib{https://elibrary.ru/item.asp?id=24716954}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84959046973}
Linking options:
  • https://www.mathnet.ru/eng/ufa290
  • https://doi.org/10.13108/2015-7-3-54
  • https://www.mathnet.ru/eng/ufa/v7/i3/p57
  • This publication is cited in the following 5 articles:
    1. Robert J. Buckingham, Peter D. Miller, “Large-Degree Asymptotics of Rational Painlevé-IV Solutions by the Isomonodromy Method”, Constr Approx, 56:2 (2022), 233  crossref
    2. R. Buckingham, “Large-degree asymptotics of rational Painleve-IV functions associated to generalized Hermite polynomials”, Int. Math. Res. Notices, 2020:18 (2020), 5534–5577  crossref  mathscinet  zmath  isi  scopus
    3. Davide Masoero, Pieter Roffelsen, “Poles of Painlevé IV Rationals and their Distribution”, SIGMA, 14 (2018), 002, 49 pp.  mathnet  crossref
    4. Victor Yu. Novokshenov, “Generalized Hermite Polynomials and Monodromy-Free Schrödinger Operators”, SIGMA, 14 (2018), 106, 13 pp.  mathnet  crossref
    5. V. Yu. Novokshenov, “Discrete integrable equations and special functions”, Ufa Math. J., 9:3 (2017), 118–130  mathnet  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:437
    Russian version PDF:179
    English version PDF:39
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025