Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2018, Volume 14, 002, 49 pp.
DOI: https://doi.org/10.3842/SIGMA.2018.002
(Mi sigma1301)
 

This article is cited in 12 scientific papers (total in 12 papers)

Poles of Painlevé IV Rationals and their Distribution

Davide Masoeroa, Pieter Roffelsenb

a Grupo de Física Matemática e Departamento de Matemática da Universidade de Lisboa, Campo Grande Edifício C6, 1749-016 Lisboa, Portugal
b School of Mathematics and Statistics F07, The University of Sydney, NSW 2006, Australia
References:
Abstract: We study the distribution of singularities (poles and zeros) of rational solutions of the Painlevé IV equation by means of the isomonodromic deformation method. Singularities are expressed in terms of the roots of generalised Hermite Hm,n and generalised Okamoto Qm,n polynomials. We show that roots of generalised Hermite and Okamoto polynomials are described by an inverse monodromy problem for an anharmonic oscillator of degree two. As a consequence they turn out to be classified by the monodromy representation of a class of meromorphic functions with a finite number of singularities introduced by Nevanlinna. We compute the asymptotic distribution of roots of the generalised Hermite polynomials in the asymptotic regime when m is large and n fixed.
Keywords: Painlevé fourth equation; singularities of Painlevé transcendents; isomonodromic deformations; generalised Hermite polynomials; generalised Okamoto polynomials.
Funding agency Grant number
Fundação para a Ciência e a Tecnologia IF/00069/2015
PTDC/MAT-STA/0975/2014
Australian Research Council DP130100967
FL120100094
D.M. is an FCT Researcher supported by the FCT Investigator Grant IF/00069/2015. D.M. is also partially supported by the FCT Research Project PTDC/MAT-STA/0975/2014. The present work began in December 2015 while D.M. was a Visiting Scholar at the University of Sydney funded by the ARC Discovery Project DP130100967. P.R. is a research associate at the University of Sydney, supported by Nalini Joshi’s ARC Laureate Fellowship Project FL120100094.
Received: July 20, 2017; in final form December 18, 2017; Published online January 6, 2018
Bibliographic databases:
Document Type: Article
Language: English
Citation: Davide Masoero, Pieter Roffelsen, “Poles of Painlevé IV Rationals and their Distribution”, SIGMA, 14 (2018), 002, 49 pp.
Citation in format AMSBIB
\Bibitem{MasRof18}
\by Davide~Masoero, Pieter~Roffelsen
\paper Poles of Painlev\'e IV Rationals and their Distribution
\jour SIGMA
\yr 2018
\vol 14
\papernumber 002
\totalpages 49
\mathnet{http://mi.mathnet.ru/sigma1301}
\crossref{https://doi.org/10.3842/SIGMA.2018.002}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000422869100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042014730}
Linking options:
  • https://www.mathnet.ru/eng/sigma1301
  • https://www.mathnet.ru/eng/sigma/v14/p2
  • This publication is cited in the following 12 articles:
    1. Nalini Joshi, Pieter Roffelsen, “On symmetric solutions of the fourth q-Painlevé equation”, J. Phys. A: Math. Theor., 56:18 (2023), 185201  crossref
    2. V. Yu. Novokshenov, “Approximation of Zeros of Generalized Hermite Polynomials by Modulated Elliptic Function”, J Math Sci, 264:3 (2022), 353  crossref
    3. Mikhail Bershtein, Pavlo Gavrylenko, Alba Grassi, “Quantum Spectral Problems and Isomonodromic Deformations”, Commun. Math. Phys., 393:1 (2022), 347  crossref
    4. R. Conti, D. Masoero, “Counting monster potentials”, J. High Energy Phys., 2021, no. 2, 59  crossref  mathscinet  isi
    5. Xia J. Xu Sh.-X. Zhao Yu.-Q., “Isomonodromy Sets of Accessory Parameters For Heun Class Equations”, Stud. Appl. Math., 146:4 (2021), 901–952  crossref  mathscinet  isi
    6. D. Masoero, P. Roffelsen, “Roots of generalised Hermite polynomials when both parameters are large”, Nonlinearity, 34:3 (2021), 1663–1732  crossref  mathscinet  isi
    7. D. Gomez-Ullate, Y. Grandati, R. Milson, “Complete classification of rational solutions of a(2n)-Painleve systems”, Adv. Math., 385 (2021), 1077707  crossref  mathscinet  isi
    8. N. Bonneux, “Asymptotic behavior of wronskian polynomials that are factorized viap-cores andp-quotients”, Math. Phys. Anal. Geom., 23:4 (2020), 36  crossref  mathscinet  zmath  isi
    9. T. Bothner, P. D. Miller, “Rational solutions of the Painleve-iii equation: large parameter asymptotics”, Constr. Approx., 51:1 (2020), 123–224  crossref  mathscinet  zmath  isi
    10. Clarkson P.A. Gomez-Ullate D. Grandati Y. Milson R., “Cyclic Maya Diagrams and Rational Solutions of Higher Order Painleve Systems”, Stud. Appl. Math., 144:3 (2020), 357–385  crossref  mathscinet  isi  scopus
    11. N. Bonneux, C. Dunning, M. Stevens, “Coefficients of wronskian Hermite polynomials”, Stud. Appl. Math., 144:3 (2020), 245–288  crossref  mathscinet  zmath  isi  scopus
    12. Victor Yu. Novokshenov, “Generalized Hermite Polynomials and Monodromy-Free Schrödinger Operators”, SIGMA, 14 (2018), 106, 13 pp.  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:277
    Full-text PDF :87
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025