Abstract:
We consider the problem on eigenfunctions of differential operators semiinvariant w.r.t. to the group of shifts. We obtain a solvability condition in terms of primitive functions and show a connection of this condition with the theory of commutative rings of differential operators.
\Bibitem{Bai14}
\by F.~Kh.~Baichorova
\paper On analogues of third order Bessel function
\jour Ufa Math. J.
\yr 2014
\vol 6
\issue 1
\pages 12--17
\mathnet{http://mi.mathnet.ru/eng/ufa229}
\crossref{https://doi.org/10.13108/2014-6-1-12}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3455918}
\elib{https://elibrary.ru/item.asp?id=21290423}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928197759}
Linking options:
https://www.mathnet.ru/eng/ufa229
https://doi.org/10.13108/2014-6-1-12
https://www.mathnet.ru/eng/ufa/v6/i1/p12
This publication is cited in the following 1 articles:
Yu. Yu. Bagderina, “Eigenfunctions of Ordinary Differential Euler Operators”, J. Math. Sci. (N. Y.), 252:2 (2021), 125–134