Loading [MathJax]/jax/output/CommonHTML/jax.js
Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2014, Volume 6, Issue 1, Pages 3–11
DOI: https://doi.org/10.13108/2014-6-1-3
(Mi ufa228)
 

Factorization problem with intersection

R. A. Atnagulovaa, O. V. Sokolovab

a Bashkir State Pedagogical University, Ufa, Russia
b Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
References:
Abstract: We propose a generalization of the factorization method to the case when G is a finite-dimensional Lie algebra G=G0MN (direct sum of vector spaces), where G0 is a subalgebra in G, M,N are G0-modules, and G0+M, G0+N are subalgebras in G. In particular, our construction involves the case when G is a Z-graded Lie algebra. Using this generalization, we construct certain top-like systems related to algebra so(3,1). According to the general scheme, these systems can be reduced to solving systems of linear equations with variable coefficients. For these systems we find polynomial first integrals and infinitesimal symmetries.
Keywords: factorization method, Lie algebra, integrable dynamical systems.
Received: 02.09.2013
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 17B80
Language: English
Original paper language: Russian
Citation: R. A. Atnagulova, O. V. Sokolova, “Factorization problem with intersection”, Ufa Math. J., 6:1 (2014), 3–11
Citation in format AMSBIB
\Bibitem{AtnSok14}
\by R.~A.~Atnagulova, O.~V.~Sokolova
\paper Factorization problem with intersection
\jour Ufa Math. J.
\yr 2014
\vol 6
\issue 1
\pages 3--11
\mathnet{http://mi.mathnet.ru/eng/ufa228}
\crossref{https://doi.org/10.13108/2014-6-1-3}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3455917}
\elib{https://elibrary.ru/item.asp?id=21290422}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928194305}
Linking options:
  • https://www.mathnet.ru/eng/ufa228
  • https://doi.org/10.13108/2014-6-1-3
  • https://www.mathnet.ru/eng/ufa/v6/i1/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:270
    Russian version PDF:105
    English version PDF:22
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025