Loading [MathJax]/jax/output/SVG/config.js
Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2018, Volume 10, Issue 4, Pages 111–121
DOI: https://doi.org/10.13108/2018-10-4-111
(Mi ufa453)
 

This article is cited in 14 scientific papers (total in 14 papers)

Third double-layer potential for a generalized bi-axially symmetric Helmholtz equation

T. G. Ergashev

Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Kari-Niyaz str. 39, 100000, Tashkent, Uzbekistan
References:
Abstract: The double-layer potential plays an important role in solving boundary value problems for elliptic equations, and in studying this potential, the properties of the fundamental solutions of the given equation are used. At present, all fundamental solutions to the generalized bi-axially symmetric Helmholtz equation are known but nevertheless, only for the first of them the potential theory was constructed. In this paper we study the double layer potential corresponding to the third fundamental solution. By using properties of Appell hypergeometric functions of two variables, we prove limiting theorems and derive integral equations involving the density of double-layer potentials in their kernels.
Keywords: generalized bi-axially symmetric Helmholtz equation, Green formula, fundamental solution, third double-layer potential, Appell hypergeometric functions of two variables, integral equations with a density of double-layer potential in their kernel.
Received: 01.08.2017
Bibliographic databases:
Document Type: Article
UDC: 517.956
Language: English
Original paper language: Russian
Citation: T. G. Ergashev, “Third double-layer potential for a generalized bi-axially symmetric Helmholtz equation”, Ufa Math. J., 10:4 (2018), 111–121
Citation in format AMSBIB
\Bibitem{Erg18}
\by T.~G.~Ergashev
\paper Third double-layer potential for a generalized bi-axially symmetric Helmholtz equation
\jour Ufa Math. J.
\yr 2018
\vol 10
\issue 4
\pages 111--121
\mathnet{http://mi.mathnet.ru/eng/ufa453}
\crossref{https://doi.org/10.13108/2018-10-4-111}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000457367000011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073673237}
Linking options:
  • https://www.mathnet.ru/eng/ufa453
  • https://doi.org/10.13108/2018-10-4-111
  • https://www.mathnet.ru/eng/ufa/v10/i4/p111
  • This publication is cited in the following 14 articles:
    1. Z. O. Arzikulov, “Boundary value problems for the three-dimensional Helmholtz equation in the unbounded octant, square and half space”, Vestnik KRAUNTs. Fiz.-mat. nauki, 48:3 (2024), 7–19  mathnet  crossref
    2. Tukhtasin Ergashev, Zafarzhon Arzikulov, Mamirzhon Kholmirzaev, “FORMULY RAZLOZhENIYa DLYa GIPERGEOMETRIChESKIKh FUNKTsII DVUKh PEREMENNYKh I IKh PRIMENENIE K TEORII SINGULYaRNYKh ELLIPTIChESKIKh URAVNENII”, VOGUMFT, 2023, no. 2(3), 149  crossref
    3. T. G. Ergashev, “Double- and simple-layer potentials for a three-dimensional elliptic equation with a singular coefficient and their applications”, Russian Math. (Iz. VUZ), 65:1 (2021), 72–86  mathnet  crossref  crossref  isi
    4. T. G. Ergashev, “Potentsialy dlya trekhmernogo ellipticheskogo uravneniya s odnim singulyarnym koeffitsientom i ikh primenenie”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 25:2 (2021), 257–285  mathnet  crossref  zmath  elib
    5. T. G. Ergashev, Z. R. Tulakova, “The Dirichlet problem for an elliptic equation with several singular coefficients in an infinite domain”, Russian Math. (Iz. VUZ), 65:7 (2021), 71–80  mathnet  crossref  crossref
    6. T. G. Ergashev, “Formuly razlozheniya dlya gipergeometricheskikh funktsii dvukh peremennykh”, Differentsialnye uravneniya, geometriya i topologiya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 201, VINITI RAN, M., 2021, 80–97  mathnet  crossref
    7. T. G. Ergashev, N. D. Komilova, “Zadacha Kholmgrena dlya mnogomernogo ellipticheskogo uravneniya s dvumya singulyarnymi koeffitsientami”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2020, no. 63, 47–59  mathnet  crossref
    8. T. G. Ergashev, A. Hasanov, “Holmgren problem for elliptic equation with singular coefficients”, Vestnik KRAUNTs. Fiz.-mat. nauki, 32:3 (2020), 114–126  mathnet  crossref
    9. A. A. Abdullaev, T. G. Ergashev, “Zadacha Puankare–Trikomi dlya uravneniya smeshannogo elliptiko-giperbolicheskogo tipa vtorogo roda”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2020, no. 65, 5–21  mathnet  crossref
    10. T. G. Ergashev, “Potentials for the singular elliptic equations and their application”, Results Appl. Math, 7 (2020), 100126  crossref  zmath  isi  scopus
    11. T. G. Ergashev, “Potentials for three-dimensional singular elliptic equation and their application to the solving a mixed problem”, Lobachevskii J. Math., 41:6, SI (2020), 1067–1077  crossref  mathscinet  zmath  isi  scopus
    12. H. M. Srivastava, A. Hasanov, T. G. Ergashev, “A family of potentials for elliptic equations with one singular coefficient and their applications”, Math. Meth. Appl. Sci., 43:10 (2020), 6181–6199  crossref  mathscinet  zmath  isi  scopus
    13. T. G. Ergashev, “Fundamental solutions of the generalized helmholtz equation with several singular coefficients and confluent hypergeometric functions of many variables”, Lobachevskii J. Math., 41:1, SI (2020), 15–26  crossref  mathscinet  zmath  isi  scopus
    14. Tuhtasin G. Ergashev, “The Dirichlet problem for elliptic equation with several singular coefficients”, e-Journal of Analysis and Applied Mathematics, 2018:1 (2018), 81  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:361
    Russian version PDF:119
    English version PDF:32
    References:73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025