Teplofizika vysokikh temperatur
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TVT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teplofizika vysokikh temperatur, 2010, Volume 48, Issue 6, Pages 973–980 (Mi tvt888)  

This article is cited in 10 scientific papers (total in 10 papers)

Heat and Mass Transfer and Physical Gasdynamics

Development of smoothed particle hydrodynamics method and its application in the hydrodynamics of condensed matter

S. A. Medin, A. N. Parshikov

Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow
Abstract: An improved smoothed particle hydrodynamics (SPH) method is described; in this method, the solution to the Riemann problem in strength media is described. Generalization of this approach to solving heat conduction problems is performed. The improved SPH method is used to solve a wide range of problems. Problems of heat conduction and volume energy release accompanied by spallation effects, simulation of high speed perforation, and propagation of failure waves in brittle materials are considered. Shock wave compression of porous materials and diffraction of detonation waves in heterogeneous explosives are simulated on the mesostructure scale.
Received: 11.05.2010
English version:
High Temperature, 2010, Volume 48, Issue 6, Pages 926–933
DOI: https://doi.org/10.1134/S0018151X10060210
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: S. A. Medin, A. N. Parshikov, “Development of smoothed particle hydrodynamics method and its application in the hydrodynamics of condensed matter”, TVT, 48:6 (2010), 973–980; High Temperature, 48:6 (2010), 926–933
Citation in format AMSBIB
\Bibitem{MedPar10}
\by S.~A.~Medin, A.~N.~Parshikov
\paper Development of smoothed particle hydrodynamics method and its application in the hydrodynamics of condensed matter
\jour TVT
\yr 2010
\vol 48
\issue 6
\pages 973--980
\mathnet{http://mi.mathnet.ru/tvt888}
\transl
\jour High Temperature
\yr 2010
\vol 48
\issue 6
\pages 926--933
\crossref{https://doi.org/10.1134/S0018151X10060210}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288445500021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79951873293}
Linking options:
  • https://www.mathnet.ru/eng/tvt888
  • https://www.mathnet.ru/eng/tvt/v48/i6/p973
  • This publication is cited in the following 10 articles:
    1. S.A. Murzov, S.A. Dyachkov, V.V. Zhakhovsky, “Adaptive moving window technique for SPH simulation of stationary shock waves”, Computer Physics Communications, 298 (2024), 109116  crossref
    2. Victor V. Kuzenov, Sergei V. Ryzhkov, Aleksey Yu Varaksin, “Development of a method for solving elliptic differential equations based on a nonlinear compact-polynomial scheme”, Journal of Computational and Applied Mathematics, 451 (2024), 116098  crossref
    3. A. N. Chetyrbotsky, “PROBLEMS OF NUMERICAL MODELING OF LARGE-SCALE MANTLE CONVECTION IN THE SUBDUCTION ZONE”, Geodin. tektonofiz., 15:6 (2024), 0790  crossref
    4. S. A. Murzov, A. N. Parshikov, S. A. Dyachkov, M. S. Egorova, S. A. Medin, V. V. Zhakhovskii, “Simulation of stationary shock waves in porous copper with smoothed particle hydrodynamics”, High Temperature, 59:2 (2021), 195–204  mathnet  mathnet  crossref  crossref  isi  scopus
    5. Nikolay G. Burago, Alexander D. Nikitin, Ilia S. Nikitin, Smart Innovation, Systems and Technologies, 133, Smart Modeling for Engineering Systems, 2019, 185  crossref
    6. A. M. Lipanov, A. B. Vakhrushev, A. Yu. Fedotov, “Issledovanie dinamicheskogo vzaimodeistviya tverdykh tel metodami matematicheskogo modelirovaniya”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 8:1 (2015), 53–65  mathnet  crossref  elib
    7. Petrov I.B., Favorskaya A.V., Shevtsov A.V., Vasyukov A.V., Potapov A.P., Ermakov A.S., “Combined Method For the Numerical Solution of Dynamic Three-Dimensional Elastoplastic Problems”, Dokl. Math., 91:1 (2015), 111–113  crossref  mathscinet  zmath  isi  elib
    8. A. V. Vasyukov, A. S. Ermakov, I. B. Petrov, A. P. Potapov, A. V. Favorskaya, A. V. Shevtsov, “Combined grid-characteristic method for the numerical solution of three-dimensional dynamical elastoplastic problems”, Comput. Math. Math. Phys., 54:7 (2014), 1176–1189  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    9. Lee J.W., “New Approach For Simulation of Large Cluster Impact Using Smoothed Particle Hydrodynamics Method”, Surf. Interface Anal., 46:1, SI (2014), 62–66  crossref  isi  elib
    10. Ning Ding, Yan Fang Zhang, Hao Wang, Jiang Rong Xu, “Influence Study of the Influence Domain to Numerical Simulation Results with Meshless Method”, AMM, 448-453 (2013), 3223  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Teplofizika vysokikh temperatur Teplofizika vysokikh temperatur
    Statistics & downloads:
    Abstract page:497
    Full-text PDF :350
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025