Loading [MathJax]/jax/output/SVG/config.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2023, Volume 68, Issue 3, Pages 509–531
DOI: https://doi.org/10.4213/tvp5633
(Mi tvp5633)
 

This article is cited in 3 scientific papers (total in 3 papers)

Population size of a critical branching process evolving in unfovarable environment

V. A. Vatutin, E. E. Dyakonova

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (562 kB) Citations (3)
References:
Abstract: Let $\{Z_n,\, n=0,1,\dots\}$ be a critical branching process in a random environment and let $\{S_n,\, n=0,1,\dots\}$ be its associated random walk. It is known that if the distribution of increments of this random walk belongs (without centering) to the domain of attraction of a stable distribution, then there is a sequence $a_1,a_2,\dots$ regularly varying at infinity such that, for any ${t\in (0,1]}$ and ${x\in(0,+\infty)}$, $\lim_{n\to \infty}\mathbf{P}({\ln Z_{nt}}/{a_n}\leq x\mid Z_n>0) = \lim_{n\to \infty}\mathbf{P}({S_{nt}}/{a_n}\leq x\mid {Z_n>0})=\mathbf{P}({Y_t^+\leq x})$, where $Y_{t}^{+}$ is the value at point $t$ of the meander of unit length of a strictly stable process. We complement this result with a description of conditional distributions of appropriately normalized random variables (r.v.'s) $\ln Z_{nt}$ and $S_{nt}$, given $\{S_n\leq\varphi(n);\ Z_n>0\}$, where $\varphi (n)\to \infty $ as $n\to \infty $ in such a way that $\varphi (n)=o(a_n)$.
Keywords: branching process, unfavorable random environment, survival probability.
Funding agency Grant number
Russian Science Foundation 19-11-00111-П
Received: 31.01.2023
Accepted: 01.02.2023
English version:
Theory of Probability and its Applications, 2023, Volume 68, Issue 3, Pages 411–430
DOI: https://doi.org/10.1137/S0040585X97T991532
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. A. Vatutin, E. E. Dyakonova, “Population size of a critical branching process evolving in unfovarable environment”, Teor. Veroyatnost. i Primenen., 68:3 (2023), 509–531; Theory Probab. Appl., 68:3 (2023), 411–430
Citation in format AMSBIB
\Bibitem{VatDya23}
\by V.~A.~Vatutin, E.~E.~Dyakonova
\paper Population size of a critical branching process evolving in unfovarable environment
\jour Teor. Veroyatnost. i Primenen.
\yr 2023
\vol 68
\issue 3
\pages 509--531
\mathnet{http://mi.mathnet.ru/tvp5633}
\crossref{https://doi.org/10.4213/tvp5633}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4665900}
\transl
\jour Theory Probab. Appl.
\yr 2023
\vol 68
\issue 3
\pages 411--430
\crossref{https://doi.org/10.1137/S0040585X97T991532}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85150938560}
Linking options:
  • https://www.mathnet.ru/eng/tvp5633
  • https://doi.org/10.4213/tvp5633
  • https://www.mathnet.ru/eng/tvp/v68/i3/p509
  • This publication is cited in the following 3 articles:
    1. Vladimir A. Vatutin, Elena E. Dyakonova, “Branching processes under nonstandard conditions”, Stoch. Qual. Control, 39:1 (2024), 1–1  mathnet  crossref
    2. V. A. Vatutin, C. Dong, E. E. Dyakonova, “Some functionals for random walks and critical branching processes in an extremely unfavourable random environment”, Sb. Math., 215:10 (2024), 1321–1350  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    3. V. A. Vatutin, C. Dong, E. E. Dyakonova, “Random walks conditioned to stay nonnegative and branching processes in an unfavourable environment”, Sb. Math., 214:11 (2023), 1501–1533  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:246
    Full-text PDF :39
    References:45
    First page:12
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025