Loading [MathJax]/jax/output/SVG/config.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2019, Volume 64, Issue 4, Pages 625–641
DOI: https://doi.org/10.4213/tvp5285
(Mi tvp5285)
 

This article is cited in 8 scientific papers (total in 8 papers)

Properties of the deviation rate function and the asymptotics for the Laplace thansform of the distribution of a compound renewal process

A. A. Borovkov, A. A. Mogul'skii, E. I. Prokopenko

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (522 kB) Citations (8)
References:
Abstract: We find the asymptotics for the logarithm of the Laplace transform of the distribution of a compound renewal process as time increases unboundedly. It is assumed that the elements of the governing sequences of the renewal process satisfy Cramér's moment condition. Representations for the deviation rate function of the compound renewal process are found.
Keywords: compound renewal process, large deviations, large deviation principle, Cramér's condition, deviation rate function, Legendre transform, Laplace transform asymptotics.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00101
This research was carried out with the financial support of the Russian Foundation for Basic Research (grant 18-01-00101).
Received: 26.12.2018
Accepted: 12.02.2019
English version:
Theory of Probability and its Applications, 2020, Volume 64, Issue 4, Pages 499–512
DOI: https://doi.org/10.1137/S0040585X97T989660
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Borovkov, A. A. Mogul'skii, E. I. Prokopenko, “Properties of the deviation rate function and the asymptotics for the Laplace thansform of the distribution of a compound renewal process”, Teor. Veroyatnost. i Primenen., 64:4 (2019), 625–641; Theory Probab. Appl., 64:4 (2020), 499–512
Citation in format AMSBIB
\Bibitem{BorMogPro19}
\by A.~A.~Borovkov, A.~A.~Mogul'skii, E.~I.~Prokopenko
\paper Properties of the deviation rate function and the asymptotics for the Laplace thansform of the distribution of a compound renewal process
\jour Teor. Veroyatnost. i Primenen.
\yr 2019
\vol 64
\issue 4
\pages 625--641
\mathnet{http://mi.mathnet.ru/tvp5285}
\crossref{https://doi.org/10.4213/tvp5285}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4030814}
\elib{https://elibrary.ru/item.asp?id=43265216}
\transl
\jour Theory Probab. Appl.
\yr 2020
\vol 64
\issue 4
\pages 499--512
\crossref{https://doi.org/10.1137/S0040585X97T989660}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000551393100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85079616659}
Linking options:
  • https://www.mathnet.ru/eng/tvp5285
  • https://doi.org/10.4213/tvp5285
  • https://www.mathnet.ru/eng/tvp/v64/i4/p625
  • This publication is cited in the following 8 articles:
    1. A. V. Logachov, A. A. Mogul'skii, “Large deviation principles for the processes admitting embedded compound renewal processes”, Siberian Math. J., 63:1 (2022), 119–137  mathnet  crossref  crossref  mathscinet
    2. A. A. Mogul'skiǐ, E. I. Prokopenko, “The Large Deviation Principle for Finite-Dimensional Distributions of Multidimensional Renewal Processes”, Sib. Adv. Math., 31:3 (2021), 188  crossref  mathscinet
    3. A. A. Mogulskii, E. I. Prokopenko, “Printsip bolshikh uklonenii dlya konechnomernykh raspredelenii mnogomernykh obobschennykh protsessov vosstanovleniya”, Matem. tr., 23:2 (2020), 148–176  mathnet  crossref
    4. A. V. Logachev, A. A. Mogulskii, “Lokalnye teoremy dlya konechnomernykh priraschenii arifmeticheskikh mnogomernykh obobschennykh protsessov vosstanovleniya pri vypolnenii usloviya Kramera”, Sib. elektron. matem. izv., 17 (2020), 1766–1786  mathnet  crossref
    5. A. A. Borovkov, “Tochnaya asimptotika preobrazovaniya Laplasa nad raspredeleniem obobschennogo protsessa vosstanovleniya i svyazannye s nei zadachi”, Sib. elektron. matem. izv., 17 (2020), 824–839  mathnet  crossref
    6. A. A. Mogulskii, E. I. Prokopenko, “Funktsiya uklonenii i bazovaya funktsiya dlya mnogomernogo obobschennogo protsessa vosstanovleniya”, Sib. elektron. matem. izv., 16 (2019), 1449–1463  mathnet  crossref
    7. A. A. Mogulskii, E. I. Prokopenko, “Printsip bolshikh uklonenii v fazovom prostranstve dlya mnogomernogo pervogo obobschennogo protsessa vosstanovleniya”, Sib. elektron. matem. izv., 16 (2019), 1464–1477  mathnet  crossref
    8. A. A. Mogulskii, E. I. Prokopenko, “Printsip bolshikh uklonenii v fazovom prostranstve dlya mnogomernogo vtorogo obobschennogo protsessa vosstanovleniya”, Sib. elektron. matem. izv., 16 (2019), 1478–1492  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:459
    Full-text PDF :56
    References:36
    First page:23
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025