Loading [MathJax]/jax/output/CommonHTML/jax.js
Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2019, Volume 16, Pages 1449–1463
DOI: https://doi.org/10.33048/semi.2019.19.100
(Mi semr1141)
 

This article is cited in 9 scientific papers (total in 9 papers)

Probability theory and mathematical statistics

The rate function and the fundamental function for multidimensional compound renewal process

A. A. Mogulskiiab, E. I. Prokopenkoba

a Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
b Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
Full-text PDF (198 kB) Citations (9)
References:
Abstract: We consider two multidimensional compound renewal processes Z(t) and Y(t). Assuming that the increments satisfy the Cramer's condition, we define and investigate the rate functions and the fundamental functions for the processes Z(t) and Y(t).
Keywords: compound multidimensional renewal process, large deviations, Cramer's condition, deviation (rate) function, fundamental function, Legendre transformation.
Funding agency Grant number
Russian Science Foundation 18-11-00129
Received June 4, 2019, published October 17, 2019
Bibliographic databases:
Document Type: Article
UDC: 519.21
MSC: 60K05, 60F10
Language: Russian
Citation: A. A. Mogulskii, E. I. Prokopenko, “The rate function and the fundamental function for multidimensional compound renewal process”, Sib. Èlektron. Mat. Izv., 16 (2019), 1449–1463
Citation in format AMSBIB
\Bibitem{MogPro19}
\by A.~A.~Mogulskii, E.~I.~Prokopenko
\paper The rate function and the fundamental function for multidimensional compound renewal process
\jour Sib. \`Elektron. Mat. Izv.
\yr 2019
\vol 16
\pages 1449--1463
\mathnet{http://mi.mathnet.ru/semr1141}
\crossref{https://doi.org/10.33048/semi.2019.19.100}
Linking options:
  • https://www.mathnet.ru/eng/semr1141
  • https://www.mathnet.ru/eng/semr/v16/p1449
  • This publication is cited in the following 9 articles:
    1. A. V. Logachov, A. A. Mogulskii, E. I. Prokopenko, “Large deviation principle for terminating multidimensional compound renewal processes with application to polymer pinning models”, Problems Inform. Transmission, 58:2 (2022), 144–159  mathnet  crossref  crossref
    2. A. V. Logachov, A. A. Mogul'skii, “Large deviation principles for the processes admitting embedded compound renewal processes”, Siberian Math. J., 63:1 (2022), 119–137  mathnet  crossref  crossref  mathscinet
    3. T. Konstantopoulos, A. V. Logachov, A. A. Mogulskii, S. G. Foss, “Limit theorems for the maximal path weight in a directed graph on the line with random weights of edges”, Problems Inform. Transmission, 57:2 (2021), 161–177  mathnet  crossref  crossref  isi
    4. A. Logachov, A. Mogulskii, E. Prokopenko, A. Yambartsev, “Local theorems for (multidimensional) additive functionals of semi-Markov chains”, Stoch. Process. Their Appl., 137 (2021), 149–166  crossref  mathscinet  zmath  isi  scopus
    5. A. A. Mogulskii, E. I. Prokopenko, “Printsip bolshikh uklonenii dlya konechnomernykh raspredelenii mnogomernykh obobschennykh protsessov vosstanovleniya”, Matem. tr., 23:2 (2020), 148–176  mathnet  crossref
    6. A. A. Mogul'skii, A. V. Logachov, “Local Theorems For Finite-Dimensional Increments of Compound Multidimensional Arithmetic Renewal Processes With Light Tails”, Sib. Electron. Math. Rep., 17 (2020), 1766–1786  mathnet  crossref  mathscinet  zmath  isi
    7. A. A. Mogul'skiǐ, E. I. Prokopenko, “Local theorems for arithmetic multidimensional compound renewal processes under Cramér's condition”, Siberian Adv. Math., 30:4 (2020), 284–302  mathnet  crossref  crossref
    8. A. A. Mogulskii, E. I. Prokopenko, “Printsip bolshikh uklonenii v fazovom prostranstve dlya mnogomernogo pervogo obobschennogo protsessa vosstanovleniya”, Sib. elektron. matem. izv., 16 (2019), 1464–1477  mathnet  crossref
    9. A. A. Mogulskii, E. I. Prokopenko, “Printsip bolshikh uklonenii v fazovom prostranstve dlya mnogomernogo vtorogo obobschennogo protsessa vosstanovleniya”, Sib. elektron. matem. izv., 16 (2019), 1478–1492  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:287
    Full-text PDF :146
    References:28
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025