Loading [MathJax]/jax/output/SVG/config.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2019, Volume 64, Issue 2, Pages 308–327
DOI: https://doi.org/10.4213/tvp5263
(Mi tvp5263)
 

This article is cited in 1 scientific paper (total in 1 paper)

Generators of quantum one-dimensional diffusions

A. S. Kholevo

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (575 kB) Citations (1)
References:
Abstract: Quantum dynamical semigroups represent a noncommutative analogue of (sub)Markov semigroups in classical probability: while the latter are semigroups of maps in functional spaces, the former are semigroups of maps in operator algebras having certain properties of positivity and normalization. In this paper we describe quantum dynamical semigroups, which are the noncommutative analogues of classical diffusions on $\mathbf{R}$ and $\mathbf{R}_{+}$, and demonstrate various properties of the semigroup and its generator depending on the boundary condition. We also give a proof of a result describing the domain of the generator of "noncommutative diffusion on $\mathbf{R}_{+}$ with extinction at 0" and give an explicit example of the trace-class operator in this domain, which does not belong to the domain of closure of the initial operator.
Keywords: quantum dynamical semigroup, quantum diffusion, generator, quantum Markovian master equations, minimal solution.
Funding agency Grant number
Russian Academy of Sciences - Federal Agency for Scientific Organizations PRAS-18-01
This work was supported by the Program of the Presidium of the Russian Academy of Sciences no. 01 “Fundamental Mathematics and Its Applications” (grant PRAS-18-01).
Received: 23.10.2018
Revised: 26.11.2018
Accepted: 25.10.2018
English version:
Theory of Probability and its Applications, 2019, Volume 64, Issue 2, Pages 249–263
DOI: https://doi.org/10.1137/S0040585X97T989477
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. S. Kholevo, “Generators of quantum one-dimensional diffusions”, Teor. Veroyatnost. i Primenen., 64:2 (2019), 308–327; Theory Probab. Appl., 64:2 (2019), 249–263
Citation in format AMSBIB
\Bibitem{Hol19}
\by A.~S.~Kholevo
\paper Generators of quantum one-dimensional diffusions
\jour Teor. Veroyatnost. i Primenen.
\yr 2019
\vol 64
\issue 2
\pages 308--327
\mathnet{http://mi.mathnet.ru/tvp5263}
\crossref{https://doi.org/10.4213/tvp5263}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3943122}
\zmath{https://zbmath.org/?q=an:07099811}
\elib{https://elibrary.ru/item.asp?id=37298296}
\transl
\jour Theory Probab. Appl.
\yr 2019
\vol 64
\issue 2
\pages 249--263
\crossref{https://doi.org/10.1137/S0040585X97T989477}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000478971000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071012290}
Linking options:
  • https://www.mathnet.ru/eng/tvp5263
  • https://doi.org/10.4213/tvp5263
  • https://www.mathnet.ru/eng/tvp/v64/i2/p308
  • This publication is cited in the following 1 articles:
    1. A. S. Kholevo, “Generators of quantum one-dimensional diffusions”, Theory Probab. Appl., 64:2 (2019), 249–263  mathnet  mathnet  crossref  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:527
    Full-text PDF :83
    References:81
    First page:21
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025