Loading [MathJax]/jax/output/SVG/config.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2019, Volume 64, Issue 3, Pages 456–480
DOI: https://doi.org/10.4213/tvp5245
(Mi tvp5245)
 

This article is cited in 14 scientific papers (total in 15 papers)

A limit theorem for supercritical random branching walks with branching sources of varying intensity

I. Khristolyubov, E. B. Yarovaya

Lomonosov Moscow State University
References:
Abstract: We consider a supercritical symmetric continuous-time branching random walk on a multidimensional lattice with a finite number of particle generation sources of varying positive intensities without any restrictions on the variance of jumps of the underlying random walk. It is assumed that the spectrum of the evolution operator contains at least one positive eigenvalue. We prove that under these conditions the largest eigenvalue of the evolution operator is simple and determines the rate of exponential growth of particle quantities at each point on the lattice as well as on the lattice as a whole.
Keywords: branching random walk, multiple sources, supercritical case, limit theorem, particle number exponential growth.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00468
This research was carried out with the financial support of the Russian Foundation for Basic Research (project no. 17-01-00468).
Received: 21.08.2018
Revised: 27.12.2018
Accepted: 24.01.2019
English version:
Theory of Probability and its Applications, 2019, Volume 64, Issue 3, Pages 365–384
DOI: https://doi.org/10.1137/S0040585X97T989556
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. Khristolyubov, E. B. Yarovaya, “A limit theorem for supercritical random branching walks with branching sources of varying intensity”, Teor. Veroyatnost. i Primenen., 64:3 (2019), 456–480; Theory Probab. Appl., 64:3 (2019), 365–384
Citation in format AMSBIB
\Bibitem{KhrYar19}
\by I.~Khristolyubov, E.~B.~Yarovaya
\paper A limit theorem for supercritical random branching walks with branching sources of varying intensity
\jour Teor. Veroyatnost. i Primenen.
\yr 2019
\vol 64
\issue 3
\pages 456--480
\mathnet{http://mi.mathnet.ru/tvp5245}
\crossref{https://doi.org/10.4213/tvp5245}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3988269}
\zmath{https://zbmath.org/?q=an:07122183}
\elib{https://elibrary.ru/item.asp?id=38590353}
\transl
\jour Theory Probab. Appl.
\yr 2019
\vol 64
\issue 3
\pages 365--384
\crossref{https://doi.org/10.1137/S0040585X97T989556}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000492370500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074324983}
Linking options:
  • https://www.mathnet.ru/eng/tvp5245
  • https://doi.org/10.4213/tvp5245
  • https://www.mathnet.ru/eng/tvp/v64/i3/p456
  • This publication is cited in the following 15 articles:
    1. M. V. Platonova, K. S. Ryadovkin, “Vetvyaschiesya diffuzionnye protsessy v periodicheskikh sredakh”, Veroyatnost i statistika. 36, Zap. nauchn. sem. POMI, 535, POMI, SPb., 2024, 214–236  mathnet
    2. M. V. Platonova, K. S. Ryadovkin, “Moment asymptotics of particle numbers at vertices for a supercritical branching random walk on a periodic graph”, Theory Probab. Appl., 68:2 (2023), 231–249  mathnet  crossref  crossref
    3. E. Filichkina, E. Yarovaya, “Branching random walks with one particle generation center and possible absorption at every point”, Mathematics, 11:7 (2023), 1676  crossref
    4. V. Kutsenko, E. Yarovaya, “Symmetric branching random walks in random media: comparing theoretical and numerical results”, Stochastic Models, 39:1 (2023), 60  crossref  mathscinet
    5. N. V. Smorodina, E. B. Yarovaya, “Martingale method for studying branching random walks”, Russian Math. Surveys, 77:5 (2022), 955–957  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    6. Rytova A., Yarovaya E., “Survival Analysis of Particle Populations in Branching Random Walks”, Commun. Stat.-Simul. Comput., 50:10 (2021), 3031–3045  crossref  mathscinet  isi
    7. A. Rytova, E. Yarovaya, “Heavy-tailed branching random walks on multidimensional lattices. A moment approach”, Proc. R. Soc. Edinb. Sect. A-Math., 151:3 (2021), PII S0308210520000463, 971–992  crossref  mathscinet  isi
    8. M. V. Platonova, K. S. Ryadovkin, “On the Variance of the Particle Number of a Supercritical Branching Random Walk on Periodic Graphs”, J Math Sci, 258:6 (2021), 897  crossref  mathscinet
    9. Elena Chernousova, Yaqin Feng, Ostap Hryniv, Stanislav Molchanov, Joseph Whitmeyer, “Steady states of lattice population models with immigration”, Mathematical Population Studies, 28:2 (2021), 63  crossref  mathscinet
    10. Elena Yarovaya, Daria Balashova, Ivan Khristolyubov, Springer Proceedings in Mathematics & Statistics, 371, Recent Developments in Stochastic Methods and Applications, 2021, 144  crossref
    11. “Abstracts of talks given at the 4th International Conference on Stochastic Methods”, Theory Probab. Appl., 65:1 (2020), 121–172  mathnet  crossref  crossref  isi  elib
    12. E. Vl. Bulinskaya, “On the maximal displacement of catalytic branching random walk”, Sib. elektron. matem. izv., 17 (2020), 1088–1099  mathnet  crossref
    13. A. I. Rytova, E. B. Yarovaya, “Moments of the numbers of particles in a heavy-tailed branching random walk”, Russian Math. Surveys, 74:6 (2019), 1126–1128  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    14. E. B. Yarovaya, J. Stoyanov, K. K. Kostyashin, “On conditions for a probability distribution to be uniquely determined by its moments”, Theory Probab. Appl., 64:4 (2020), 579–594  mathnet  crossref  crossref  mathscinet  isi  elib
    15. M. V. Platonova, K. S. Ryadovkin, “O dispersii chislennosti chastits nadkriticheskogo vetvyaschegosya sluchainogo bluzhdaniya na periodicheskikh grafakh”, Veroyatnost i statistika. 28, Zap. nauchn. sem. POMI, 486, POMI, SPb., 2019, 233–253  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:549
    Full-text PDF :101
    References:91
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025